资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

PyTorch中TensorBoard如何使用

PyTorch中TensorBoard如何使用,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

公司主营业务:成都网站建设、网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联推出安乡免费做网站回馈大家。

步骤

  • 设置TensorBoard。

简单说是设置基本tensorboard运行需要的东西,我这代码中的imshow(img)和matplotlib_imshow(img, one_channel=False)都是显示图片的函数,可以统一替换,我自己测试就没改了!

# helper function to show an image
# (used in the `plot_classes_preds` function below)
def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))    

# 设置tensorBoard
# default `log_dir` is "runs" - we'll be more specific here
writer = SummaryWriter('runs/image_classify_tensorboard')

# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# create grid of images
img_grid = torchvision.utils.make_grid(images)

# show images
# matplotlib_imshow(img_grid, one_channel=True)
imshow(img_grid)

# write to tensorboard
writer.add_image('imag_classify', img_grid)

# Tracking model training with TensorBoard
# helper functions

def images_to_probs(net, images):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = net(images)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    # preds = np.squeeze(preds_tensor.numpy())
    preds = np.squeeze(preds_tensor.cpu().numpy())
    return preds, [F.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(net, images, labels):
    '''
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "images_to_probs" function.
    '''
    preds, probs = images_to_probs(net, images)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in np.arange(4):
        ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
        matplotlib_imshow(images[idx], one_channel=True)
        ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
            classes[preds[idx]],
            probs[idx] * 100.0,
            classes[labels[idx]]),
                    color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig
  • 写入TensorBoard。

这个在训练的每一阶段写入tensorboard

        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))

            # 把数据写入tensorflow
            # ...log the running loss
            writer.add_scalar('image training loss',
                            running_loss / 2000,
                            epoch * len(trainloader) + i)

            # ...log a Matplotlib Figure showing the model's predictions on a
            # random mini-batch
            writer.add_figure('predictions vs. actuals',
                            plot_classes_preds(net, inputs, labels),
                            global_step=epoch * len(trainloader) + i)
  • 运行

tensorboard --logdir=runs

PyTorch中TensorBoard如何使用

  • 打开http://localhost:6006/ 即可查看

PyTorch中TensorBoard如何使用

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联行业资讯频道,感谢您对创新互联的支持。


网站栏目:PyTorch中TensorBoard如何使用
文章位置:http://cdkjz.cn/article/psioch.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220