本篇内容主要讲解“Pandas基本文本数据的处理方法”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Pandas基本文本数据的处理方法”吧!
成都创新互联公司是一家集网站建设,枣庄企业网站建设,枣庄品牌网站建设,网站定制,枣庄网站建设报价,网络营销,网络优化,枣庄网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。
1.# 系列和索引配有一组字符串处理方法,使它容易操作数组的每个元素。或许最重要的是,这些方法自动排除失踪/ NA值。这里有一些字符串方法的例子:In [1]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])#小写方法In [2]: s.str.lower() Out[2]: 0 a1 b2 c3 aaba4 baca5 NaN6 caba7 dog8 cat dtype: object#大写方法In [3]: s.str.upper() Out[3]: 0 A1 B2 C3 AABA4 BACA5 NaN6 CABA7 DOG8 CAT dtype: object#显示字符串的长度In [4]: s.str.len() Out[4]: 0 1.01 1.02 1.03 4.04 4.05 NaN6 4.07 3.08 3.0dtype: float64 In [5]: idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank'])#去除两边的空格In [6]: idx.str.strip() Out[6]: Index([u'jack', u'jill', u'jesse', u'frank'], dtype='object')#去除左边的空格In [7]: idx.str.lstrip() Out[7]: Index([u'jack', u'jill ', u'jesse ', u'frank'], dtype='object')#去除右边的空格In [8]: idx.str.rstrip() Out[8]: Index([u' jack', u'jill', u' jesse', u'frank'], dtype='object')# df.columns一个index对象,所以我们科研用.str存取器In [9]: df = pd.DataFrame(randn(3, 2), columns=[' Column A ', ' Column B '], ...: index=range(3)) ...: In [10]: df Out[10]: Column A Column B 0 0.017428 0.0390491 -2.240248 0.8478592 -1.342107 0.368828#去除列名的空格In [11]: df.columns.str.strip() Out[11]: Index([u'Column A', u'Column B'], dtype='object')#列名小写In [12]: df.columns.str.lower() Out[12]: Index([u' column a ', u' column b '], dtype='object')#将列名先去空,再小写,再将空格替换为"_"In [13]: df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_') In [14]: df Out[14]: column_a column_b0 0.017428 0.0390491 -2.240248 0.8478592 -1.342107 0.3688282.#拆分和替换字符In [15]: s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])#以_拆分,返回的是列表In [16]: s2.str.split('_') Out[16]: 0 [a, b, c]1 [c, d, e]2 NaN3 [f, g, h] dtype: object#元素可以通过str.get()方法来获取In [17]: s2.str.split('_').str.get(1) Out[17]: 0 b1 d2 NaN3 g dtype: object#也可以通过str[]来获取In [18]: s2.str.split('_').str[1] Out[18]: 0 b1 d2 NaN3 g dtype: object#可以通过设置expand参数直接返回一个数据框In [19]: s2.str.split('_', expand=True) Out[19]: 0 1 20 a b c1 c d e2 NaN None None3 f g h#可以通过设置n参数来设置分割点的个数In [20]: s2.str.split('_', expand=True, n=1) Out[20]: 0 10 a b_c1 c d_e2 NaN None3 f g_h#rsplit想对与split来说是从相反的方向(reverse direction)来分割In [21]: s2.str.rsplit('_', expand=True, n=1) Out[21]: 0 10 a_b c1 c_d e2 NaN None3 f_g h#像replace和findall这样的方法可以使用正则表达式In [22]: s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', ....: '', np.nan, 'CABA', 'dog', 'cat']) ....: In [23]: s3 Out[23]: 0 A1 B2 C3 Aaba4 Baca5 6 NaN7 CABA8 dog9 cat dtype: object In [24]: s3.str.replace('^.a|dog', 'XX-XX ', case=False) Out[24]: 0 A1 B2 C3 XX-XX ba4 XX-XX ca5 6 NaN7 XX-XX BA8 XX-XX 9 XX-XX t dtype: object3.#通过str[]来索引In [29]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, ....: 'CABA', 'dog', 'cat']) ....: In [30]: s.str[0] Out[30]: 0 A1 B2 C3 A4 B5 NaN6 C7 d8 c dtype: object In [31]: s.str[1] Out[31]: 0 NaN1 NaN2 NaN3 a4 a5 NaN6 A7 o8 a dtype: object4.#提取字符串#如果提取的规则结果有多组,则会返回数据框,不匹配的返回NaNIn [32]: pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)', expand=False) Out[32]: 0 10 a 11 b 22 NaN NaN#注意正则表达式中的任何捕获组名称将用于列名,否则捕获的组名将被当作列名In [33]: pd.Series(['a1', 'b2', 'c3']).str.extract('(?P[ab])(?P \d)', expand=False) Out[33]: letter digit0 a 11 b 22 NaN NaN#参数expand=True在一组返回值的情况下,返回数据框In [35]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True) Out[35]: 00 11 22 NaN#参数expand=False在一组返回值的情况下,返回序列(Series)In [36]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False) Out[36]: 0 11 22 NaN dtype: object#参数expand=True作用在索引上时,一组数据返回数据框In [37]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"]) In [38]: s Out[38]: A11 a1 B22 b2 C33 c3 dtype: object In [39]: s.index.str.extract("(?P [a-zA-Z])", expand=True) Out[39]: letter0 A1 B2 C#参数expand=False作用在索引上时,一组数据返回索引In [40]: s.index.str.extract("(?P [a-zA-Z])", expand=False) Out[40]: Index([u'A', u'B', u'C'], dtype='object', name=u'letter')#下图表示了在expand=False时,各种情况下index,Series返回值的情况 1 group >1 group Index Index ValueError Series Series DataFrame5.#提取所有匹配的字符串#extract只返回第一个匹配到的字符In [42]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"]) In [43]: s Out[43]: A a1a2 B b1 C c1 dtype: object In [44]: two_groups = '(?P [a-z])(?P [0-9])'In [45]: s.str.extract(two_groups, expand=True) Out[45]: letter digit A a 1B b 1C c 1#extractall将匹配所有返回的字符In [46]: s.str.extractall(two_groups) Out[46]: letter digit match A 0 a 1 1 a 2B 0 b 1C 0 c 16.#测试是否包含某规则In [56]: pattern = r'[a-z][0-9]'In [57]: pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern) Out[57]: 0 False1 False2 False3 False4 Falsedtype: bool7. #match, contains, startswith, and endswith可以设置缺失值是True还是falseIn [59]: s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) In [60]: s4.str.contains('A', na=False) Out[60]: 0 True1 False2 False3 True4 False5 False6 True7 False8 Falsedtype: bool8.#提取伪变量In [61]: s = pd.Series(['a', 'a|b', np.nan, 'a|c']) In [62]: s.str.get_dummies(sep='|') Out[62]: a b c0 1 0 01 1 1 02 0 0 03 1 0 1#获取复杂索引In [63]: idx = pd.Index(['a', 'a|b', np.nan, 'a|c']) In [64]: idx.str.get_dummies(sep='|') Out[64]: MultiIndex(levels=[[0, 1], [0, 1], [0, 1]], labels=[[1, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1]], names=[u'a', u'b', u'c'])
到此,相信大家对“Pandas基本文本数据的处理方法”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!