这篇文章给大家分享的是有关javascript数据结构之多叉树经典操作的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
专注于为中小企业提供网站建设、成都网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业广安免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
多叉树可以实现复杂的数据结构的存储,通过遍历方法可以方便高效的查找数据,提高查找的效率,同时方便管理节点数据。javascript的DOM其实就是以多叉树的形式存储的。下面用javascript来实现多叉树的数据结构
1、创造一个节点
数据是以节点的形式存储的:
class Node { constructor(data) { this.data = data; this.parent = null; this.children = []; } }
2、创造树
树用来连接节点,就像真实世界树的主干一样,延伸着很多分支
class MultiwayTree { constructor() { this._root = null; } }
3、添加一个节点
function add(data, toData, traversal) { let node = new Node(data) // 第一次添加到根节点 // 返回值为this,便于链式添加节点 if (this._root === null) { this._root = node; return this; } let parent = null, callback = function(node) { if (node.data === toData) { parent = node; return true; } }; // 根据遍历方法查找父节点(遍历方法后面会讲到),然后把节点添加到父节点 // 的children数组里 // 查找方法contains后面会讲到 this.contains(callback, traversal); if (parent) { parent.children.push(node); node.parent = parent; return this; } else { throw new Error('Cannot add node to a non-existent parent.'); } }
4、深度优先遍历
深度优先会尽量先从子节点查找,子节点查找完再从兄弟节点查找,适合数据深度比较大的情况,如文件目录
function traverseDF(callback) { let stack = [], found = false; stack.unshift(this._root); let currentNode = stack.shift(); while(!found && currentNode) { // 根据回调函数返回值决定是否在找到第一个后继续查找 found = callback(currentNode) === true ? true : false; if (!found) { // 每次把子节点置于堆栈最前头,下次查找就会先查找子节点 stack.unshift(...currentNode.children); currentNode = stack.shift(); } } }
5、广度优先遍历
广度优先遍历会优先查找兄弟节点,一层层往下找,适合子项较多情况,如公司岗位级别
function traverseBF(callback) { let queue = [], found = false; queue.push(this._root); let currentNode = queue.shift(); while(!found && currentNode) { // 根据回调函数返回值决定是否在找到第一个后继续查找 found = callback(currentNode) === true ? true : false; if (!found) { // 每次把子节点置于队列最后,下次查找就会先查找兄弟节点 queue.push(...currentNode.children) currentNode = queue.shift(); } } }
6、包含节点
function contains(callback, traversal) { traversal.call(this, callback); }
回调函数算法可自己根据情况实现,灵活度较高
7、移除节点
// 返回被移除的节点 function remove(data, fromData, traversal) { let parent = null, childToRemove = null, callback = function(node) { if (node.data === fromData) { parent = node; return true; } }; this.contains(callback, traversal); if (parent) { let index = this._findIndex(parent.children, data); if (index < 0) { throw new Error('Node to remove does not exist.'); } else { childToRemove = parent.children.splice(index, 1); } } else { throw new Error('Parent does not exist.'); } return childToRemove; }
_findIndex实现:
function _findIndex(arr, data) { let index = -1; for (let i = 0, len = arr.length; i < len; i++) { if (arr[i].data === data) { index = i; break; } } return index; }
完整算法
class Node { constructor(data) { this.data = data; this.parent = null; this.children = []; } } class MultiwayTree { constructor() { this._root = null; } //深度优先遍历 traverseDF(callback) { let stack = [], found = false; stack.unshift(this._root); let currentNode = stack.shift(); while(!found && currentNode) { found = callback(currentNode) === true ? true : false; if (!found) { stack.unshift(...currentNode.children); currentNode = stack.shift(); } } } //广度优先遍历 traverseBF(callback) { let queue = [], found = false; queue.push(this._root); let currentNode = queue.shift(); while(!found && currentNode) { found = callback(currentNode) === true ? true : false; if (!found) { queue.push(...currentNode.children) currentNode = queue.shift(); } } } contains(callback, traversal) { traversal.call(this, callback); } add(data, toData, traversal) { let node = new Node(data) if (this._root === null) { this._root = node; return this; } let parent = null, callback = function(node) { if (node.data === toData) { parent = node; return true; } }; this.contains(callback, traversal); if (parent) { parent.children.push(node); node.parent = parent; return this; } else { throw new Error('Cannot add node to a non-existent parent.'); } } remove(data, fromData, traversal) { let parent = null, childToRemove = null, callback = function(node) { if (node.data === fromData) { parent = node; return true; } }; this.contains(callback, traversal); if (parent) { let index = this._findIndex(parent.children, data); if (index < 0) { throw new Error('Node to remove does not exist.'); } else { childToRemove = parent.children.splice(index, 1); } } else { throw new Error('Parent does not exist.'); } return childToRemove; } _findIndex(arr, data) { let index = -1; for (let i = 0, len = arr.length; i < len; i++) { if (arr[i].data === data) { index = i; break; } } return index; } }
控制台测试代码
var tree = new MultiwayTree(); tree.add('a') .add('b', 'a', tree.traverseBF) .add('c', 'a', tree.traverseBF) .add('d', 'a', tree.traverseBF) .add('e', 'b', tree.traverseBF) .add('f', 'b', tree.traverseBF) .add('g', 'c', tree.traverseBF) .add('h', 'c', tree.traverseBF) .add('i', 'd', tree.traverseBF); console.group('traverseDF'); tree.traverseDF(function(node) { console.log(node.data); }); console.groupEnd('traverseDF'); console.group('traverseBF'); tree.traverseBF(function(node) { console.log(node.data); }); console.groupEnd('traverseBF'); // 深度优先查找 console.group('contains1'); tree.contains(function(node) { console.log(node.data); if (node.data === 'f') { return true; } }, tree.traverseDF); console.groupEnd('contains1') // 广度优先查找 console.group('contains2'); tree.contains(function(node) { console.log(node.data); if (node.data === 'f') { return true; } }, tree.traverseBF); console.groupEnd('contains2'); tree.remove('g', 'c', tree.traverseBF);
这里使用在线HTML/CSS/JavaScript代码运行工具:http://tools.jb51.net/code/HtmlJsRun测试运行效果如下:
感谢各位的阅读!关于“javascript数据结构之多叉树经典操作的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!