这篇文章主要介绍“ssd存储原理是什么”,在日常操作中,相信很多人在ssd存储原理是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”ssd存储原理是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
10年积累的网站制作、成都网站设计经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有迪庆州免费网站建设让你可以放心的选择与我们合作。
众所周知SSD的读写速度远比hdd磁盘要快,理解ssd的工作原理使我们开发处高效储存方案。
linux 相关指令
fstrim --fstab --verbose ## 回收(discard)文件系统上对应磁盘未使用的块 blkdiscard /dev/nvme1n1 ## 回收并擦除(discard)整个SSD块设备 wipefs -a /dev/nvme1n1 ## 擦除(erase)文件系统的签名
fstrim
fstrim命令实际可以视为手动对SSD磁盘下发TRIM指令。使用-v参数可以直接查看TRIM回收擦除空间的大小。fstrim是针对已挂载的文件系统的SSD分区
root@xxxx:~# fstrim --help Usage: fstrim [options]Discard unused blocks on a mounted filesystem. Options: -a, --all trim all supported mounted filesystems -A, --fstab trim all supported mounted filesystems from /etc/fstab -o, --offset the offset in bytes to start discarding from -l, --length the number of bytes to discard -m, --minimum the minimum extent length to discard -v, --verbose print number of discarded bytes -n, --dry-run does everything, but trim -h, --help display this help -V, --version display version For more details see fstrim(8).
以下是执行后返回的结果,以NVMe 为列
/home: 32.5 GiB (313011310592 bytes) trimmed on /dev/mapper/gat204--vg-root /boot/efi: 102.2 MiB (607301632 bytes) trimmed on /dev/nvme1n1p1 /boot: 732.5 MiB (825778176 bytes) trimmed on /dev/nvme1n1p2 /: 60.7 GiB (65154805760 bytes) trimmed on /dev/mapper/gat204--vg-swap_1
ubuntu与debian的systemd 服务可以定时执行fstrim,省去手写crontab脚本工作。
systemctl status fstrim.timer ##查询服务状态 systemctl enable fstrim.timer ##开启定时TRIM功能
blkdiscard
blkdiscard用于擦除(discard)SSD设备扇区,和fstrim不同这条命令直接用在块设备上,默认擦除整个块设备的所有扇区。
root@xxxx:~# blkdiscard -help Usage: blkdiscard [options]Discard the content of sectors on a device. Options: -o, --offset offset in bytes to discard from -l, --length length of bytes to discard from the offset -p, --step size of the discard iterations within the offset -s, --secure perform secure discard -z, --zeroout zero-fill rather than discard -v, --verbose print aligned length and offset -h, --help display this help -V, --version display version For more details see blkdiscard(8). root@ECSab169d:~# man blkdiscard
擦除(discard)成功后,没有返回结果
root@xxxx:~# blkdiscard /dev/nvme1n1 root@xxxx:~#
wipefs
wipefs是linux自带的程序,用来擦除(erase)文件系统的签名,不会清空文件系统或设备中的任何其他数据。默认情况下, wipefs 不会擦除非整个磁盘设备上的嵌套分区表。为此,需要—force选项。
root@gat204:~# wipefs --help Usage: wipefs [options]Wipe signatures from a device. Options: -a, --all wipe all magic strings (BE CAREFUL!) -b, --backup create a signature backup in $HOME -f, --force force erasure -i, --noheadings don't print headings -J, --json use JSON output format -n, --no-act do everything except the actual write() call -o, --offset offset to erase, in bytes -O, --output COLUMNS to display (see below) -p, --parsable print out in parsable instead of printable format -q, --quiet suppress output messages -t, --types
limit the set of filesystem, RAIDs or partition tables -h, --help display this help -V, --version display version Available output columns: UUID partition/filesystem UUID LABEL filesystem LABEL LENGTH magic string length TYPE superblok type OFFSET magic string offset USAGE type description DEVICE block device name For more details see wipefs(8).
检查SSD是否支持TRIM
##可以通过 /sys/block 下的信息来判断 SSD 支持 TRIM, discard_granularity 非 0 表示支持。 # cat /sys/block/sda/queue/discard_granularity 0 # cat /sys/block/nvme0n1/queue/discard_granularity 512
存储元器件(闪存颗粒类别)
SSD的储存是NAND-Flash闪存颗粒,分为SLC、MLC和QLC四种。可以粗略地把闪存颗粒理解成是一个电容加上电压计的组合。一个电容能存放一个比特的数据,电压计使电容能区分不同电压,不同的电压能存放更多的比特数据。
SLC(Single-Level Cell): 每个Cell单元存储1bit信息,也就是只有0、1两种电压变化,结构简单,电压控制也快速,反映出来的特点就是寿命长,性能强,P/E寿命在1万到10万次之间,但缺点就是容量低而成本高.
MLC(Multi-Level Cell): 每个cell单元存储2bit信息,需要更复杂的电压控制,有00,01,10,11四种变化,这也意味着写入性能、可靠性能降低了。其P/E寿命根据不同制程在3000-5000次不等.
TLC(Triple-Level Cell):每个cell单元存储3bit信息,电压从000到001有8种变化,容量比MLC再次增加1/3,成本更低,但是架构更复杂,P/E编程时间长,写入速度慢,P/E寿命也降至1000-3000次,部分情况会更低.寿命短只是相对而言的,通常来讲,经过重度测试的TLC颗粒正常使用5年以上是没有问题的.
QLC(Quad-Level Cell):QLC或者可以叫4bit MLC,电压有16种变化,但是容量能增加33%,就是写入性能、P/E寿命与TLC相比会进一步降低。具体的性能测试上,美光有做过实验。读取速度方面,SATA接口中的二者都可以达到540MB/S,QLC表现差在写入速度上,因为其P/E编程时间就比MLC、TLC更长,速度更慢,连续写入速度从520MB/s降至360MB/s,随机性能更是从9500 IOPS降至5000 IOPS,损失将近一半.
这四类当中,SLC的性能最优,价格超高;MLC性能够用,价格适中为消费级SSD应用主流;TLC综合性能最低,价格最便宜,但可以通过高性能主控、主控算法来弥补、提高TLC闪存的性能;QLC出现的时间很早,价格便宜,容量大。
P/E以及其SSD底层储存结构
P指的是Program(编程),E指的是Erease (擦除), 闪存完全擦写一次可以称为1次P/E,因此闪存的寿命以P/E为单位。和HDD机械硬盘不同,HDD的数据是可以覆写的(Overwrite),而SSD在写入数据前必须先进行擦除(erase),一般在格式化文件系统步骤或者SSD出厂配置的过程中,SSD已进行了全盘擦除(erase),因此SSD的首次写入数据是直接编程。
SSD 在闪存单元中存取数据时有 page和 block的概念。SSD 被划分成很多 block, 而 block 被划分成很多 page。
NAND-Flash读写流程
Page是NAND-Flash单次读写单位,大小一般为4K或者4K字节的倍数,写操作只能写到空的 page,而清除数据(Erase) 是以 块(block) 为单位的。块的擦除次数有寿命限制,超限制就会变成坏块。
用户对SSD的写入数据操作可以分为两种类型
1.原来SSD磁盘上没有数据,写入数据。
2.SSD磁盘上有数据,对该数据进行修改(包括删除)。
前者只需把数据直接写入到空白页即可,后者则是read-modify-write方式操作,读取原有page的内容到缓存中并进行更新,最后写入到其他空的page,原有的page置为无效页。
可以想象对文件的持续反复的修改,将会产生大量的无效页,这就需要“垃圾回收”(Garbage Collection-gc)机制来回收这些无效页,否则可以写入空间越来越小。
FTL 和磨损均衡
SSD的主控执行磨损均衡(Wear-Leveling)策略,使SSD磁盘各个块的擦除次数均匀分摊到各个块上。就像内存MMU一样,SSD内部使用闪存转换层(FTL)存放了逻辑块地址(Logical Block Address,简称 LBA)到物理块地址(Physical Block Address,简称 PBA)的映射。操作系统访问的硬盘地址,其实都是逻辑地址。只有通过 FTL 转换之后,才会变成实际的物理地址,找到对应的块进行访问。操作系统本身,不需要去考虑块的磨损程度,只要和操作机械硬盘一样来读写数据就好了。
“垃圾回收”机制
写入放大(write amplification)
上文提及过数据的反复修改会产生大量的无效页,一旦整个块(block)的空间不足以写入数据,SSD会将这个块(block)的数据读入到缓存中,擦除这个块(block)所中的页,然后再把缓存中已更新的数据写入进去。这种read-erase-modify-write过程,就好比写入的数据可能只有一个页4KB,但实际要擦除并且写N个页,称之为写入放大。
写入放大的倍数越大,写入的速度就越慢。
TRIM指令
TRIM是SSD的ATA-8指令,解决写入放大的关键。
文件系统在修改或者删除过程中,发送给通知给SSD记录产生的无效页,间隔一定时间再统一回收擦除所有无效页,擦除更新无效页所在的块(block)。
一方面预留足够多的空间,避免因空间不足产生写入放大的情况。另一方面,使用TRIM,在IO闲时回收擦除无效页,这样有效保证SSD的性能以及提高寿命。
discard与TRIM的区别
在linux术语中,discard指的就是TRIM
不建议使用linux系统默认的TRIM功能
TRIM功能有两种方式启动,一种是连续TRIM,就是直接在文件系统回收块的时候直接发TRIM命令,这种方式对性能影响比较大,在fstab挂载的时候把default修改成discard。另外一种是定期执行fstrim批量进行TRIM操作,这样避免平时的性能影响,不过fstrim的执行时机要选好,毕竟批量TRIM的时候会对其它任务性能影响较大。
根据文章《Ubuntu Doesn’t TRIM SSDs By Default: Why Not and How To Enable It Yourself》提及到
“The kernel implementation of realtime trim in 11.2, 11.3, and 11.4 is not optimized. The spec. calls for trim supporting a vectorized list of trim ranges, but as of kernel 3.0 trim is only invoked by the kernel with a single discard / trim range and with current mid 2011 SSDs this has proven to cause a performance degradation instead of a performance increase. There are few reasons to use the kernels realtime discard support with pre-3.1 kernels. It is not known when the kernels discard functionality will be optimized to work beneficially with current generation SSDs.” [Source]
利用内核方式的discard 方式无法感知对SSD当前性能的影响。
实践
使用fio测试nvme裸设备
使用fio对裸设备直接进行randwrite测试,在超过30分钟速度由400MiB/s降低至80MiB/s 分析原因得出SSD触发了放大写现象,并且由于没有挂载文件系统,无法使用fstrim手动回收空间(可以理解成,在没有文件系统标记下,SSD也不知道哪些是无效页),再次进行fio测试速度依然是80MiB/s。使用blkdiscard进行全盘擦除后,速度恢复正常。
参考文献
《Trim命令》 wiki百科
《浅谈分布式存储之SSD基本原理》滴滴云
《Linux 下启用 SSD TRIM 功能》Louis
结束语
当使用fio直接ssd磁盘进行写入测试后,对磁盘使用blkdiscard可恢复原来的速度。
到此,关于“ssd存储原理是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!