PostgreSQL中如何使用数组,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
创新互联主要从事网站设计制作、网站设计、网页设计、企业做网站、公司建网站等业务。立足成都服务肃南裕固族自治,10余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18980820575
这种情况几星期前在Heap出现了。我们在Heap为每个跟踪用户维护一个事件数组,在这个数组中我们用一个hstore datum代表每个事件。我们有一个导入管道来追加新事件到对应的数组。为了使这一导入管道是幂等的,我们给每个事件设定一个event_id,我们通过一个功能函数重复运行我们的事件数组。如果我们要更新附加到事件的属性的话,我们只需使用相同的event_id转储一个新的事件到管道中。
所以,我们需要一个功能函数来处理hstores数组,并且,如果两个事件具有相同的event_id时应该使用数组中最近出现的那个。刚开始尝试这个函数是这样写的:
-- This is slow, and you don't want to use it! -- -- Filter an array of events such that there is only one event with each event_id. -- When more than one event with the same event_id is present, take the latest one. CREATE OR REPLACE FUNCTION dedupe_events_1(events HSTORE[]) RETURNS HSTORE[] AS $$ SELECT array_agg(event) FROM ( -- Filter for rank = 1, i.e. select the latest event for any collisions on event_id. SELECT event FROM ( -- Rank elements with the same event_id by position in the array, descending.
这个查询在拥有2.4GHz的i7CPU及16GB Ram的macbook pro上测得,运行脚本为:https://gist.github.com/drob/9180760。
在这边究竟发生了什么呢? 关键在于PostgreSQL存贮了一个系列的hstores作为数组的值, 而不是指向值的指针. 一个包含了三个hstores的数组看起来像
{“event_id=>1,data=>foo”, “event_id=>2,data=>bar”, “event_id=>3,data=>baz”}
相反的是
{[pointer], [pointer], [pointer]}
对于那些长度不一的变量, 举个例子. hstores, json blobs, varchars,或者是 text fields, PostgreSQL 必须去找到每一个变量的长度. 对于evaluateevents[2], PostgreSQL 解析从左侧读取的事件直到读取到第二次读取的数据. 然后就是 forevents[3], 她再一次的从第一个索引处开始扫描,直到读到第三次的数据! 所以, evaluatingevents[sub]是 O(sub), 并且 evaluatingevents[sub]对于在数组中的每一个索引都是 O(N2), N是数组的长度.
PostgreSQL能得到更加恰当的解析结果, 它可以在这样的情况下分析该数组一次. 真正的答案是可变长度的元素与指针来实现,以数组的值, 以至于,我们总能够处理 evaluateevents[i]在不变的时间内.
即便如此,我们也不应该让PostgreSQL来处理,因为这不是一个地道的查询。除了generate_subscripts我们可以用unnest,它解析数组并返回一组条目。这样一来,我们就不需要在数组中显式加入索引了。
-- Filter an array of events such that there is only one event with each event_id. -- When more than one event with the same event_id, is present, take the latest one. CREATE OR REPLACE FUNCTION dedupe_events_2(events HSTORE[]) RETURNS HSTORE[] AS $$ SELECT array_agg(event) FROM ( -- Filter for rank = 1, i.e. select the latest event for any collisions on event_id. SELECT event FROM ( -- Rank elements with the same event_id by position in the array, descending. SELECT event, row_number AS index, rank() OVER (PARTITION BY (event -> 'event_id')::BIGINT ORDER BY row_number DESC) FROM ( -- Use unnest instead of generate_subscripts to turn an array into a set. SELECT event, row_number() OVER (ORDER BY event -> 'time') FROM unnest(events) AS event ) unnested_data ) deduped_events WHERE rank = 1 ORDER BY index ASC ) to_agg; $$ LANGUAGE SQL IMMUTABLE;
结果是有效的,它花费的时间跟输入数组的大小呈线性关系。对于100K个元素的输入它需要大约半秒,而之前的实现需要40秒。
这实现了我们的需求:
一次解析数组,不需要unnest。
按event_id划分。
对每个event_id采用最新出现的。
按输入索引排序。
教训:如果你需要访问PostgreSQL数组的特定位置,考虑使用unnest代替。
SELECT events[sub] AS event, sub, rank() OVER (PARTITION BY (events[sub] -> 'event_id')::BIGINT ORDER BY sub DESC) FROM generate_subscripts(events, 1) AS sub ) deduped_events WHERE rank = 1 ORDER BY sub ASC ) to_agg; $$ LANGUAGE SQL IMMUTABLE;
这样奏效,但大输入是性能下降了。这是二次的,在输入数组有100K各元素时它需要大约40秒!
这个查询在拥有2.4GHz的i7CPU及16GB Ram的macbook pro上测得,运行脚本为:https://gist.github.com/drob/9180760。
在这边究竟发生了什么呢? 关键在于PostgreSQL存贮了一个系列的hstores作为数组的值, 而不是指向值的指针. 一个包含了三个hstores的数组看起来像
{“event_id=>1,data=>foo”, “event_id=>2,data=>bar”, “event_id=>3,data=>baz”}
相反的是
{[pointer], [pointer], [pointer]}
对于那些长度不一的变量, 举个例子. hstores, json blobs, varchars,或者是 text fields, PostgreSQL 必须去找到每一个变量的长度. 对于evaluateevents[2], PostgreSQL 解析从左侧读取的事件直到读取到第二次读取的数据. 然后就是 forevents[3], 她再一次的从第一个索引处开始扫描,直到读到第三次的数据! 所以, evaluatingevents[sub]是 O(sub), 并且 evaluatingevents[sub]对于在数组中的每一个索引都是 O(N2), N是数组的长度.
PostgreSQL能得到更加恰当的解析结果, 它可以在这样的情况下分析该数组一次. 真正的答案是可变长度的元素与指针来实现,以数组的值, 以至于,我们总能够处理 evaluateevents[i]在不变的时间内.
即便如此,我们也不应该让PostgreSQL来处理,因为这不是一个地道的查询。除了generate_subscripts我们可以用unnest,它解析数组并返回一组条目。这样一来,我们就不需要在数组中显式加入索引了。
-- Filter an array of events such that there is only one event with each event_id. -- When more than one event with the same event_id, is present, take the latest one. CREATE OR REPLACE FUNCTION dedupe_events_2(events HSTORE[]) RETURNS HSTORE[] AS $$ SELECT array_agg(event) FROM ( -- Filter for rank = 1, i.e. select the latest event for any collisions on event_id. SELECT event FROM ( -- Rank elements with the same event_id by position in the array, descending. SELECT event, row_number AS index, rank() OVER (PARTITION BY (event -> 'event_id')::BIGINT ORDER BY row_number DESC) FROM ( -- Use unnest instead of generate_subscripts to turn an array into a set. SELECT event, row_number() OVER (ORDER BY event -> 'time') FROM unnest(events) AS event ) unnested_data ) deduped_events WHERE rank = 1 ORDER BY index ASC ) to_agg; $$ LANGUAGE SQL IMMUTABLE;
结果是有效的,它花费的时间跟输入数组的大小呈线性关系。对于100K个元素的输入它需要大约半秒,而之前的实现需要40秒。
这实现了我们的需求:
一次解析数组,不需要unnest。
按event_id划分。
对每个event_id采用最新出现的。
按输入索引排序。
关于PostgreSQL中如何使用数组问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。