ndarry的矩阵运算
数组是编程中的概念,矩阵、矢量是数学概念
在计算机编程中,矩阵可以用数组形式定义,矢量可以用结构定义在酉阳土家族苗族等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站设计、成都做网站 网站设计制作按需网站策划,公司网站建设,企业网站建设,高端网站设计,网络营销推广,外贸网站制作,酉阳土家族苗族网站建设费用合理。
示例代码(1):
# 矢量与矢量运算
arr = np.array([[1, 2, 3],
[4, 5, 6]])
print("元素相乘:")
print(arr * arr)
print("矩阵相加:")
print(arr + arr)
运行结果:
元素相乘:
[[ 1 4 9]
[16 25 36]]
矩阵相加:
[[ 2 4 6]
[ 8 10 12]]
# 矢量与标量运算
print(1. / arr)
print(2. * arr)
运算结果:
[[ 1. 0.5 0.33333333]
[ 0.25 0.2 0.16666667]]
[[ 2. 4. 6.]
[ 8. 10. 12.]]
ndarray的索引与切片
与Python的列表索引功能相似
示例代码(1):
# 一维数组
arr1 = np.arange(10)
print(arr1)
print(arr1[2:5])
运行结果:
[0 1 2 3 4 5 6 7 8 9]
[2 3 4]
arr[r1:r2, c1:c2]
arr[1,1]等价arr[1][1]
[:]代表某个维度的数据
示例代码(2):
# 多维数组
arr2 = np.arange(12).reshape(3, 4)
print(arr2)
print(arr2[1])
print(arr2[0:2, 2:])
print(arr2[:, 1:3])
运行结果:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[4 5 6 7]
[[2 3]
[6 7]]
[[ 1 2]
[ 5 6]
[ 9 10]]
布尔值多维数组:arr[condition], condition也可以是多个条件组合。
注意,多个条件组合要使用& |连接,而不是Python的 and or。
示例代码(3):
# 条件索引
# 找出 data_arr 中 2005年后的数据
data_arr = np.random.rand(3, 3)
print(data_arr)
year_arr = np.array([[2000, 2001, 2000],
[2005, 2002, 2009],
[2001, 2003, 2010]])
is_year_after_2005 = year_arr >= 2005
print(is_year_after_2005, is_year_after_2005.dtype)
filtered_arr = data_arr[is_year_after_2005]
print(filtered_arr)
#filtered_arr = data_arr[year_arr >= 2005]
#print(filtered_arr)
# 多个条件
filtered_arr = data_arr[(year_arr <= 2005) & (year_arr % 2 == 0)]
print(filtered_arr)
运行结果:
[[ 0.53514038 0.93893429 0.1087513 ]
[ 0.32076215 0.39820313 0.89765765]
[ 0.6572177 0.71284822 0.15108756]]
[[False False False]
[ True False True]
[False False True]] bool
[ 0.32076215 0.89765765 0.15108756]
#[ 0.32076215 0.89765765 0.15108756]
[ 0.53514038 0.1087513 0.39820313]
二维数组直接使用转换函数:transpose()
高维数组转换要指定维度编号参数(0,1,2,……),注意参数是元组
示例代码:
arr = np.random.rand(2, 3) # 2*3 数组
print(arr)
print(arr.transpose()) # 转换为 3*2 数组
arr3d = np.random.rand(2, 3, 4) # 2*3*4数组,2对应0, 3对应1,4对应2
print(arr3d)
print(arr3d.transpose((1, 0, 2))) # 根据维度编号,转换为3*2*4数组
运行结果:
# 高维数组转换
# 转换前:
[[[ 0.91281153 0.61213743 0.16214062 0.73380458]
[ 0.45539155 0.04232412 0.82857746 0.35097793]
[ 0.70418988 0.78075814 0.70963972 0.63774692]]
[[ 0.17772347 0.64875514 0.48422954 0.86919646]
[ 0.92771033 0.51518773 0.82679073 0.18469917]
[ 0.37260457 0.49041953 0.96221477 0.16300198]]]
# 转换后:
[[[ 0.91281153 0.61213743 0.16214062 0.73380458]
[ 0.17772347 0.64875514 0.48422954 0.86919646]]
[[ 0.45539155 0.04232412 0.82857746 0.35097793]
[ 0.92771033 0.51518773 0.82679073 0.18469917]]
[[ 0.70418988 0.78075814 0.70963972 0.63774692]
[ 0.37260457 0.49041953 0.96221477 0.16300198]]]