资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

Prim算法原理是什么以及完整C代码的实现

今天就跟大家聊聊有关Prim算法原理是什么以及完整C代码的实现,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

创新互联致力于互联网网站建设与网站营销,提供成都网站设计、做网站、网站开发、seo优化、网站排名、互联网营销、成都小程序开发、公众号商城、等建站开发,创新互联网站建设策划专家,为不同类型的客户提供良好的互联网应用定制解决方案,帮助客户在新的全球化互联网环境中保持优势。

Prim算法

涉及到的几个基础知识

  • 生成树: 一个连通图的生成树是它的极小连通子图,在n个顶点的情形下,有n-1条边。生成树是对连通图而言的,是连通图的极小连通子图,包含途中所有顶点,有且仅有n-1条边。非连通图的生成树则组成一个声称森林;若图中有n个顶点,m个连通分量,则生成森林中有n-m条边。

  • 图的遍历: 和树的遍历相似,若从图中某顶点出发,访问遍途中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历。图的遍历算法是求解图的连通性问题、拓扑排序和求关键路径等算法的基础。图的常用遍历顺序有两种:深度优先搜索(DFS)和广度优先搜索(BFS),对每种搜索顺序,访问各顶点的顺序也不是唯一的。

  • 在一个无向连通图G中,其所有顶点和遍历该图经过的所有边所构成的子图G',称作图G的生成树。一个图可以有多个生成树,从不同的顶点除法,采用不同的遍历顺序,遍历时所经过的边也就不同。

  • 最小生成树:在图论中,常常将树定义为一个无回路连通图。对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树成为图的最小生成树(MST)。

  • MST性质:MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集。若(u,v)是一条具有最小权值的边,其中u∈U,v∈V-U,则必存在一棵包含边(u,v)的最小生成树。

Prim算法

  • 基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法从U={u0}(u0∈V)、TE={}开始。重复执行下列操作:

  • 在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)并入集合TE中,同时v0并入U,直到V=U为止。
    此时,TE中必有n-1条边,T=(V,TE)为G的最小生成树。

  • Prim算法的核心:始终保持TE中的边集构成一棵生成树。

  • Prim算法举例:

采用的是顶点数为6的无向连通图:

Prim算法原理是什么以及完整C代码的实现

设集合V={A,B,C,D,E,F},即所有顶点的集合。

集合U为最小生成树的结点。

按照Prim算法:

  1. 将A加入U,此时,U={ A },V-U={ B,C,D,E};

  2. 与A邻接的顶点有B,C,D。(A,B)、(A,C)、(A,D),权值分别为6、1、5,因而选定(A,C)为最小生成树的一条边;

  3. 将上一步选定的在V-U中的顶点C加入U,此时,U={A,C}, V-U={ B,D,E,F};

  4. V-U中与U中顶点组成的边有(A,B)、(A,D)、(C,B)、(C,D)、(C,E)、(C,F),权值分别为6、5、5、5、6、4,因而选定(C,F)为最小生成树的一条边;

  5. 将F加入U中,此时U={ A,C,F} , V-U={ B, D,E};

  6. V-U中与U中顶点组成的边有(A,B)、(A,D)、(C,B)、(C,D)、(C,E)、(F,D)、(F,E),权值分别为6、5、5、5、6、2、6,选定(F,D)为最小生成树的一条边;

  7. 将D加入U中,此时,U={ A,C,F,D}, V-U={ B,E};

  8. V-U中与U中顶点组成的边有(A,B)、(C,B)、(C,E)、(F,E),权值分别为6、5、6、6,选定(C,B)为最小生成树的一条边。

  9. 将B加入U中,此时U= {A,C,F ,D,B }, V -U={E };

  10. V-U中与U中顶点组成的边有(B,E)、(C,E)、(F,E),权值分别为3、6、6,选定(B,E)为最小生成树的一条边。

  11. 将E加入U中,此时U={A ,C,F,D,B,E},完成MST的生成。

其生成过程图示如下:
  1.  Prim算法原理是什么以及完整C代码的实现

          


  2. Prim算法原理是什么以及完整C代码的实现


  3. Prim算法原理是什么以及完整C代码的实现


  4. Prim算法原理是什么以及完整C代码的实现


  5. Prim算法原理是什么以及完整C代码的实现           

Prim算法C代码

难点是prim函数中的两个辅助数组的具体含义:lowcost数组,顾名思义,最小代价。也就是 lowcost[k] 保存着V-U中编号为k的顶点到U中所有顶点的最小权值。closest数组,顾名思义,距离最近。 也就是 closest[k] 保存着U中到V-U中编号为K的顶点权值最小的顶点的编号。这两个数组的元素是随着顶点不断加入U集合而动态变化的。程序中采用邻接矩阵法创建图。

/* 求最小生成树的prim算法 */

#include 
#include 

#define MaxSize 20
#define MAX 10000

typedef char VertexType;

//定义图 的邻接矩阵表示法结构
typedef struct Graph {
	VertexType ver[MaxSize+1];
	int edg[MaxSize][MaxSize];
}Graph;

//邻接矩阵法图的生成函数
void CreateGraph( Graph *g )
{
	int i = 0;
	int j = 0;
	int VertexNum;
	VertexType Ver;

	printf("请输入图的顶点:\n");
	while( '\n' != (Ver=getchar()) )
		g->ver[i++] = Ver;
	g->ver[i] = '\0';

	VertexNum = strlen(g->ver);
	printf("请输入相应的的邻接矩阵:\n");
	for( i=0; iedg[i][j]);
}

//打印图的结点标识符和邻接矩阵
void PrintGraph( Graph g )
{
	int i, j;
	int VertexNum = strlen(g.ver);
	printf("图的顶点为:\n");
	for( i=0; iedg[i][j] )
				g->edg[i][j] = MAX;
}

//运用prim算法求最小生成树
void prim( Graph g, int VerNum, int *parent )
{
	int i, j, k;
	int lowcost[MaxSize];
	int closest[MaxSize], used[MaxSize];
	int min;

	for( i=0; i

测试结果:数据即为前面所讲的图。Prim算法原理是什么以及完整C代码的实现

看完上述内容,你们对Prim算法原理是什么以及完整C代码的实现有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。


本文名称:Prim算法原理是什么以及完整C代码的实现
分享路径:http://cdkjz.cn/article/jossio.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220