资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

HanLP分词器HanLPTokenizer怎么实现

HanLP分词器HanLPTokenizer怎么实现,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

创新互联公司专注为客户提供全方位的互联网综合服务,包含不限于成都网站设计、成都网站建设、外贸网站建设、仁寿网络推广、成都微信小程序、仁寿网络营销、仁寿企业策划、仁寿品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联公司为所有大学生创业者提供仁寿建站搭建服务,24小时服务热线:18982081108,官方网址:www.cdcxhl.com

anlp在功能上的扩展主要体现在以下几个方面:

•关键词提取 

•自动摘要

•短语提取 

•拼音转换

•简繁转换

•文本推荐

下面是 hanLP分词器的代码

注:使用maven依赖 

  

   com.hankcs  

   hanlp  

   portable-1.3.4  

 

使用了java8进行处理

import java.util.ArrayList;

import java.util.List;

import java.util.stream.Collectors;

import org.apache.commons.lang3.StringUtils;

import com.hankcs.hanlp.seg.Segment;

import com.hankcs.hanlp.seg.Dijkstra.DijkstraSegment;

import com.hankcs.hanlp.seg.NShort.NShortSegment;

import com.hankcs.hanlp.tokenizer.IndexTokenizer;

import com.hankcs.hanlp.tokenizer.NLPTokenizer;

import com.hankcs.hanlp.tokenizer.SpeedTokenizer;

import com.hankcs.hanlp.tokenizer.StandardTokenizer;

public class HanLPTokenizer {

private static final Segment N_SHORT_SEGMENT = new NShortSegment().enableCustomDictionary(false)

.enablePlaceRecognize(true).enableOrganizationRecognize(true);

private static final Segment DIJKSTRA_SEGMENT = new DijkstraSegment().enableCustomDictionary(false)

.enablePlaceRecognize(true).enableOrganizationRecognize(true);

/**

* 标准分词

* @param text

* @return

*/

public static List standard(String text) {

List list = new ArrayList();

StandardTokenizer.segment(text).forEach(term -> {

if (StringUtils.isNotBlank(term.word)) {

list.add(term.word);

}

});

return list.stream().distinct().collect(Collectors.toList());

}

/**

* NLP分词

* @param text

* @return

*/

public static List nlp(String text) {

List list = new ArrayList();

NLPTokenizer.segment(text).forEach(term -> {

if (StringUtils.isNotBlank(term.word)) {

list.add(term.word);

}

});

return list.stream().distinct().collect(Collectors.toList());

}

/**

* 索引分词

* @param text

* @return

*/

public static List index(String text) {

List list = new ArrayList();

IndexTokenizer.segment(text).forEach(term -> {

if (StringUtils.isNotBlank(term.word)) {

list.add(term.word);

}

});

return list.stream().distinct().collect(Collectors.toList());

}

/**

* 极速词典分词

* @param text

* @return

*/

public static List speed(String text) {

List list = new ArrayList();

SpeedTokenizer.segment(text).forEach(term -> {

if (StringUtils.isNotBlank(term.word)) {

list.add(term.word);

}

});

return list;

}

/**

* N-最短路径分词

* @param text

* @return

*/

public static List nShort(String text) {

List list = new ArrayList();

N_SHORT_SEGMENT.seg(text).forEach(term -> {

if (StringUtils.isNotBlank(term.word)) {

list.add(term.word);

}

});

return list.stream().distinct().collect(Collectors.toList());

}

/**

* 最短路径分词

* @param text

* @return

*/

public static List shortest(String text) {

List list = new ArrayList();

DIJKSTRA_SEGMENT.seg(text).forEach(term -> {

if (StringUtils.isNotBlank(term.word)) {

list.add(term.word);

}

});

return list.stream().distinct().collect(Collectors.toList());

}

public static void main(String[] args) {

String text = "测试勿动12";

System.out.println("标准分词:" + standard(text));

System.out.println("NLP分词:" + nlp(text));

System.out.println("索引分词:" + index(text));

System.out.println("N-最短路径分词:" + nShort(text));

System.out.println("最短路径分词分词:" + shortest(text));

System.out.println("极速词典分词:" + speed(text));

}

}

关于  HanLP分词器HanLPTokenizer怎么实现问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。


当前题目:HanLP分词器HanLPTokenizer怎么实现
标题网址:http://cdkjz.cn/article/jogogs.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220