资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python数据分析:pandas学习之Series数组

学习pandas需要一些numpy学习基础:numpy学习总结

成都创新互联是一家专业提供宾县企业网站建设,专注与成都做网站、网站制作、HTML5建站、小程序制作等业务。10年已为宾县众多企业、政府机构等服务。创新互联专业的建站公司优惠进行中。

虽然numpy已经可以结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢?

numpy 能够帮我们处理数值型数据,但是这还不够

很多时候,我们数据除了数值之外,还有字符串,时间序列等

比如:我们通过爬虫获取到了存储在数据库中的数据

所以, numpy能够帮助我们处理数值,但是pandas处理处理数值之外(基于numpy),还能够帮助我们处理其他类型的数据

pandas常用的数据类型

1.Series一维, 带标签(索引)数组

2. DataFrame二维, Series容器

pandas的Series学习

创建一个Series数组

import pandas as pd

import numpy as np

# 创建长度为10的Series数组

t = pd.Series(np.arange(10))

python数据分析:pandas学习之Series数组

这样就可以创建一个简单的Series数组了,数组的左边是它的索引,右边是它的值

,因此它有index和values方法

python数据分析:pandas学习之Series数组

更改Series数组的索引值

其中index=list(string.ascii_uppercase[:10])表示的是取前10位大写字母来代替索引

在这里插入代码片

注意: pd.Series能够干什么,能够传入什么类型的数据让其变为series结构,index是什么?

在什么位置,对于我们常见的数据库或者ndarray来说,index是什么,如何给一组数据指定index?

在pd.Series()中的参数可以传入一个字典,也能传入一个列表,元组等

重新给其指定其他的索引之后,如果能够对应上,就取其值,如果不能,就为nan, 此时数据的类型就为float类型了,因为numpy中的nan为float类型,pandas会自动根据数据类型更改Series的dtype类型,若要修改此类型,使用.astype即可修改

pandas之Series切片和索引

t = pd.Series(np.arange(10), index=list(string.ascii_uppercase[:10]))

t[2:10:2] # 从第三个开始以步长为2,到第10个为止

t[[2, 3, 6]] # 选择第三个, 第四个, 和第七个的值

t["F"] # 选择索引为F的值

结果如下:

切片:在"[]"中直接传入start end 或者步长即可

索引:一个的时候传入序号或者index,多个的时候传入序号或者index的列表

pandas之Series的索引和值

对于一个陌生的series类型,我们如何知道它的索引和具体的值呢:

t.index ==> 返回数组的索引,是一个列表类型,可以进行遍历,也可进行强制类型转换,如: tuple(t.index) # 进行强制类型转换

t.values ==> 返回数组的值,是一个列表类型,可以进行遍历,也可进行强制类型转换,如: tuple(t.values)

Series对象本质上由两个数组构成。

一个数组构成对象的键(index,索引),一个数组构成对象的值(values),键 -> 值

ndarray的很多方法都可以运用于series类型,比如argmax,clip

series具有where方法,但是结果和ndarray不同,具体方法可以查看官方文档np.Series.where使用教程

pandas读取MongoDB数据

这里由于我的mongodb里面没有数据,所以我就手动添加了一些数据(0.0)

from pymongo import MongoClient

import pandas as pd

client = MongoClient()

collection = client["xin"]["test"]

data = list(collection.find())

a = ["hello", "world"]

data.append(a)

t1 = data[0]

t1 = pd.Series(t1)

print(t1)

结果如下

python数据分析:pandas学习之Series数组

pandas读取外部文件

pandas提供了很多读取数据的方法,比如:

郑州妇科医院 http://fk.zyfuke.com/

python数据分析:pandas学习之Series数组

这里我以csv文件举例

import pandas as pd

# pandas 读取文件

t = pd.read_csv("./demo.csv")

print(t)

csv文件结果如下

python数据分析:pandas学习之Series数组

我们这组的数据存在csv文件中,我们直接使用pd.read_csv即可

和我们想象中的有些差别,我们以为他会是一个Series类型,但实际上它是一个DataFrame数组类型。


新闻名称:python数据分析:pandas学习之Series数组
标题网址:http://cdkjz.cn/article/jepogi.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220