这篇文章主要介绍了hadoop中如何实现GenericWritable,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
创新互联公司长期为上千客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为龙川企业提供专业的做网站、网站建设,龙川网站改版等技术服务。拥有十载丰富建站经验和众多成功案例,为您定制开发。
package com.test; import java.io.IOException; import java.util.Iterator; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.GenericWritable; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat; import org.apache.hadoop.mapreduce.lib.input.MultipleInputs; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; /** * 业务场景: * 含有两个文件,两个文件中单词之间的分隔方式不一样,但是统计出单词在两个文件中公共出现的次数 * * 文件来源1,逗号分隔text1.txt * hello,what * you,haha * 文件来源2,制表符分隔text2.txt * girl boy * father mother */ public class WordCountGenericWritable extends Configured implements Tool { public static class Map1 extends Mapper{ public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer st = new StringTokenizer(line, ","); while(st.hasMoreElements()) { context.write(new Text(st.nextElement().toString()), new MyGenericWritable(new LongWritable(1))); } } } public static class Map2 extends Mapper { public void map(Text key, Text value, Context context) throws IOException, InterruptedException { context.write(key, new MyGenericWritable(new Text("1"))); context.write(value, new MyGenericWritable(new Text("1"))); } } public static class Reduce extends Reducer { public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { int count = 0; Iterator it = values.iterator(); while(it.hasNext()) { MyGenericWritable myGw = it.next(); Writable value = myGw.get(); if(value instanceof LongWritable) { count = count + Long.valueOf(((LongWritable)value).get()).intValue(); } if(value instanceof Text) { count = count + Long.valueOf(((Text)value).toString()).intValue(); } } context.write(key, new IntWritable(count)); } } public int run(String[] args) throws IOException, InterruptedException, ClassNotFoundException { Configuration conf = this.getConf(); Job job = new Job(conf); job.setJobName(WordCountGenericWritable.class.getSimpleName()); job.setJarByClass(WordCountGenericWritable.class); MultipleInputs.addInputPath(job, new Path("hdfs://grid131:9000/text1.txt"), TextInputFormat.class, Map1.class); MultipleInputs.addInputPath(job, new Path("hdfs://grid131:9000/text2.txt"), KeyValueTextInputFormat.class, Map2.class); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setReducerClass(Reduce.class); job.setOutputFormatClass(TextOutputFormat.class); //当map的输出类型和reduce的输出类型不一致的时候,需要单独设置map输出类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(MyGenericWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.waitForCompletion(true); return job.isSuccessful()?0:1; } public static void main(String[] args) throws Exception { int exit = ToolRunner.run(new WordCount(), args); System.exit(exit); } } class MyGenericWritable extends GenericWritable { public MyGenericWritable() { } public MyGenericWritable(LongWritable longWritable) { super.set(longWritable); } public MyGenericWritable(Text text) { super.set(text); } @Override protected Class extends Writable>[] getTypes() { return new Class[]{LongWritable.class, Text.class}; } }
感谢你能够认真阅读完这篇文章,希望小编分享的“hadoop中如何实现GenericWritable”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!