资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

如何控制hive任务的reduce数

这篇文章主要介绍如何控制hive任务的reduce数,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

创新互联长期为成百上千家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为城区企业提供专业的网站设计制作、做网站城区网站改版等技术服务。拥有十载丰富建站经验和众多成功案例,为您定制开发。

1. Hive自己如何确定reduce数:
reduce个数的设定极大影响任务执行效率,不指定reduce个数的情况下,Hive会猜测确定一个reduce个数,基于以下两个设定:
hive.exec.reducers.bytes.per.reducer(每个reduce任务处理的数据量,默认为1000^3=1G)
hive.exec.reducers.max(每个任务最大的reduce数,默认为999)
计算reducer数的公式很简单N=min(参数2,总输入数据量/参数1)
即,如果reduce的输入(map的输出)总大小不超过1G,那么只会有一个reduce任务;
如:select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;
/group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 总大小为9G多,因此这句有10个reduce

2. 调整reduce个数方法一:
调整hive.exec.reducers.bytes.per.reducer参数的值;
set hive.exec.reducers.bytes.per.reducer=500000000; (500M)
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 这次有20个reduce

3. 调整reduce个数方法二;
set mapred.reduce.tasks = 15;
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;这次有15个reduce

4. reduce个数并不是越多越好;
同map一样,启动和初始化reduce也会消耗时间和资源;
另外,有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;

5. 什么情况下只有一个reduce;
很多时候你会发现任务中不管数据量多大,不管你有没有设置调整reduce个数的参数,任务中一直都只有一个reduce任务;
其实只有一个reduce任务的情况,除了数据量小于hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因:
a) 没有group by的汇总,比如把select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 写成 select count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04';
这点非常常见,希望大家尽量改写。
b) 用了Order by
c) 有笛卡尔积
通常这些情况下,除了找办法来变通和避免,我暂时没有什么好的办法,因为这些操作都是全局的,所以hadoop不得不用一个reduce去完成;

同样的,在设置reduce个数的时候也需要考虑这两个原则:使大数据量利用合适的reduce数;使单个reduce任务处理合适的数据量;

Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具。

使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,

所以需要去掉原有关系型数据库下开发的一些固有思维。

基本原则:

1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段

select ... from A

join B

on A.key = B.key

where A.userid>10

and B.userid<10

and A.dt='20120417'

and B.dt='20120417';

应该改写为:

select .... from (select .... from A

where dt='201200417'

and userid>10

) a

join ( select .... from B

where dt='201200417'

and userid < 10

) b

on a.key = b.key;

2:尽量原子化操作,尽量避免一个SQL包含复杂逻辑

可以使用中间表来完成复杂的逻辑

drop table if exists tmp_table_1;

create table if not exists tmp_table_1 as

select ......;

drop table if exists tmp_table_2;

create table if not exists tmp_table_2 as

select ......;

drop table if exists result_table;

create table if not exists result_table as

select ......;

drop table if exists tmp_table_1;

drop table if exists tmp_table_2;

3:单个SQL所起的JOB个数尽量控制在5个以下

4:慎重使用mapjoin,一般行数小于2000行,大小小于1M(扩容后可以适当放大)的表才能使用,小表要注意放在join的左边(目前TCL里面很多都小表放在join的右边)。

否则会引起磁盘和内存的大量消耗

5:写SQL要先了解数据本身的特点,如果有join ,group操作的话,要注意是否会有数据倾斜

如果出现数据倾斜,应当做如下处理:

set hive.exec.reducers.max=200;

set mapred.reduce.tasks= 200;---增大Reduce个数

set hive.groupby.mapaggr.checkinterval=100000 ;--这个是group的键对应的记录条数超过这个值则会进行分拆,值根据具体数据量设置

set hive.groupby.skewindata=true; --如果是group by过程出现倾斜 应该设置为true

set hive.skewjoin.key=100000; --这个是join的键对应的记录条数超过这个值则会进行分拆,值根据具体数据量设置

set hive.optimize.skewjoin=true;--如果是join 过程出现倾斜 应该设置为true

6:如果union all的部分个数大于2,或者每个union部分数据量大,应该拆成多个insert into 语句,实际测试过程中,执行时间能提升50%

insert overwite table tablename partition (dt= ....)

select ..... from (

select ... from A

union all

select ... from B

union all

select ... from C

) R

where ...;

可以改写为:

insert into table tablename partition (dt= ....)

select .... from A

WHERE ...;

insert into table tablename partition (dt= ....)

select .... from B

WHERE ...;

insert into table tablename partition (dt= ....)

select .... from C

WHERE ...;

以上是“如何控制hive任务的reduce数”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!


网站名称:如何控制hive任务的reduce数
网页路径:http://cdkjz.cn/article/ijccdh.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220