如何进行Spark中MLlib的本质分析,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
成都创新互联公司2013年开创至今,是专业互联网技术服务公司,拥有项目成都网站制作、成都做网站网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元涞水做网站,已为上家服务,为涞水各地企业和个人服务,联系电话:18982081108
org.apache.spark.ml(http://spark.apache.org/docs/latest/ml-guide.html )
org.apache.spark.ml.attribute org.apache.spark.ml.classification org.apache.spark.ml.clustering org.apache.spark.ml.evaluation org.apache.spark.ml.feature org.apache.spark.ml.param org.apache.spark.ml.recommendation org.apache.spark.ml.regression org.apache.spark.ml.source.libsvm org.apache.spark.ml.tree org.apache.spark.ml.tuning org.apache.spark.ml.util
org.apache.spark.mllib (http://spark.apache.org/docs/latest/mllib-guide.html )
org.apache.spark.mllib.classification org.apache.spark.mllib.clustering org.apache.spark.mllib.evaluation org.apache.spark.mllib.feature org.apache.spark.mllib.fpm org.apache.spark.mllib.linalg org.apache.spark.mllib.linalg.distributed org.apache.spark.mllib.pmml org.apache.spark.mllib.random org.apache.spark.mllib.rdd org.apache.spark.mllib.recommendation org.apache.spark.mllib.regression org.apache.spark.mllib.stat org.apache.spark.mllib.stat.distributed org.apache.spark.mllib.stat.test org.apache.spark.mllib.tree org.apache.spark.mllib.tree.configuration org.apache.spark.mllib.tree.impurity org.apache.spark.mllib.tree.loss org.apache.spark.mllib.tree.model org.apache.spark.mllib.util
ML概念
DataFrame: Spark ML uses DataFrame from Spark SQL as an ML dataset, which can hold a variety of data types. E.g., a DataFrame could have different columns storing text, feature vectors, true labels, and predictions. Transformer: A Transformer is an algorithm which can transform one DataFrame into another DataFrame. E.g., an ML model is a Transformer which transforms DataFrame with features into a DataFrame with predictions. Estimator: An Estimator is an algorithm which can be fit on a DataFrame to produce a Transformer. E.g., a learning algorithm is an Estimator which trains on a DataFrame and produces a model. Pipeline: A Pipeline chains multiple Transformers and Estimators together to specify an ML workflow. Parameter: All Transformers and Estimators now share a common API for specifying parameters.
ML分类和回归
Classification Logistic regression Decision tree classifier Random forest classifier Gradient-boosted tree classifier Multilayer perceptron classifier One-vs-Rest classifier (a.k.a. One-vs-All) Regression Linear regression Decision tree regression Random forest regression Gradient-boosted tree regression Survival regression Decision trees Tree Ensembles Random Forests Gradient-Boosted Trees (GBTs)
ML聚类
K-means Latent Dirichlet allocation (LDA)
MLlib 数据类型
Local vector Labeled point Local matrix Distributed matrix RowMatrix IndexedRowMatrix CoordinateMatrix BlockMatrix
MLlib 分类和回归
Binary Classification: linear SVMs, logistic regression, decision trees, random forests, gradient-boosted trees, naive Bayes Multiclass Classification:logistic regression, decision trees, random forests, naive Bayes Regression:linear least squares, Lasso, ridge regression, decision trees, random forests, gradient-boosted trees, isotonic regression
MLlib 聚类
K-means Gaussian mixture Power iteration clustering (PIC,多用于图像识别) Latent Dirichlet allocation (LDA,多用于主题分类) Bisecting k-means Streaming k-means
MLlib Models
DecisionTreeModel DistributedLDAModel GaussianMixtureModel GradientBoostedTreesModel IsotonicRegressionModel KMeansModel LassoModel LDAModel LinearRegressionModel LocalLDAModel LogisticRegressionModel MatrixFactorizationModel NaiveBayesModel PowerIterationClusteringModel RandomForestModel RidgeRegressionModel StreamingKMeansModel SVMModel Word2VecModel
Example
import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.param.ParamMap import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.apache.spark.sql.Row val training = sqlContext.createDataFrame(Seq( (1.0, Vectors.dense(0.0, 1.1, 0.1)), (0.0, Vectors.dense(2.0, 1.0, -1.0)), (0.0, Vectors.dense(2.0, 1.3, 1.0)), (1.0, Vectors.dense(0.0, 1.2, -0.5)) )) .toDF("label", "features") val lr = new LogisticRegression() println("LogisticRegression parameters:\n" + lr.explainParams() + "\n") lr.setMaxIter(10).setRegParam(0.01) val model1 = lr.fit(training) println("Model 1 was fit using parameters: " + model1.parent.extractParamMap) val paramMap = ParamMap(lr.maxIter -> 20) .put(lr.maxIter, 30) .put(lr.regParam -> 0.1, lr.threshold -> 0.55) val paramMap2 = ParamMap(lr.probabilityCol -> "myProbability") val paramMapCombined = paramMap ++ paramMap2 val model2 = lr.fit(training, paramMapCombined) println("Model 2 was fit using parameters: " + model2.parent.extractParamMap) test = sqlContext.createDataFrame(Seq( (1.0, Vectors.dense(-1.0, 1.5, 1.3)), (0.0, Vectors.dense(3.0, 2.0, -0.1)), (1.0, Vectors.dense(0.0, 2.2, -1.5)) )) .toDF("label", "features") model2.transform(test) .select("features", "label", "myProbability", "prediction") .collect() .foreach { case Row(features: Vector, label: Double, prob: Vector, prediction: Double) => println(s"($features, $label) -> prob=$prob, prediction=$prediction") }
看完上述内容,你们掌握如何进行Spark中MLlib的本质分析的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!