脑袋一热,想看一下300以内的最大素数是多少,就写了一个。
注意:对正整数n,如果用2到n的平方根之间的所有整数去除,均无法整除,则n为质数(素数)。
镇平ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!
# -*- coding:utf-8 -*-
import math
import time
ss = [] # 放可能是素数的列表
fss = [] # 放可能是非素数的列表
result = [] # 最终结果
x = 300
print("start!" )
start = time.clock()
# 遍历所有小于X,大于2的数
for xx in range(2, x+1):
# 只要xx的数,不能被2至xx的平方根的所有数整除,就是素数
for i in range(2, int(math.sqrt(xx)+1)):
if (xx % i) != 0:
i = i + 1
# print("素数: ",xx)
ss.append(xx)
else:
# print("非素数", xx)
fss.append(xx)
# 只要x中的数没有出现在非素数列表中,则它就是素数
for j in range(2, x+1):
if j not in fss:
result.append(j)
print("result: ", result)
end = time.clock()
times = ''.join("%f s" % (end - start)) # 看用时多久
print("end!\n耗时:", times)
结果:
start!
result: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293]
end!
耗时:0.002066 s
百度百科里有一个比较简单:而且速度也快。
# 判断是否为素数
def is_prime(n):
if n == 1:
return False
for i in range(2, int(math.sqrt(n)+1)):
if n % i == 0:
return False
return True
start = time.clock()
print("start:" )
for n in range(2, x+1):
if is_prime(n) is True:
result.append(n)
print(result)
end = time.clock()
times = ''.join("%f s" % (end - start))
print("end!\n耗时:", times)
结果
start:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293]
end!
耗时: 0.000434 s