资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

Python中numpy中any()和all()的使用方法

小编给大家分享一下Python中numpy中any()和all()的使用方法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

创新互联建站服务项目包括许昌网站建设、许昌网站制作、许昌网页制作以及许昌网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,许昌网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到许昌省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

1.简介:numpy.array.any()和numpy.array.all(),以下都用简写

np.array.any()是或操作,任意一个元素为True,输出为True。

np.array.all()是与操作,所有元素为True,输出为True。

import numpy as np arr1 = np.array([0,1,2,3]) print(arr1.any())   # True print(arr1.all())   # False

import numpy as np arr2 = np.array([True,True,True]) print(arr2.any())   # True print(arr2.all())   # True

2.运用:判断np.array是否相等

首先,我们看一下list和np.array的区别:

lst1 = [1,3,5,7,9] lst2 = [2,4,6,8,10] print(lst1 == lst2) #result:False

import numpy as np arr1 = np.arange(10) arr2 = np.arange(10) print(arr1 == arr2) #result:[ True  True  True  True  True  True  True  True  True  True]

可以看出:用 “=” 判断两个list 是否相同,返回的是True或False,而np.array返回的是每个元素值比较的列表。

那么如何比较两个np.array,而不是其中的元素呢?

arr1 = np.arange(10) arr2 = np.arange(10) print((arr1 == arr2).all()) #result:True

arr1 == arr2返回的仍然是np.array类型的数组,因此,再通过.all()方法即可判断arr1、arr2是否相等。

以上是Python中numpy中any()和all()的使用方法的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


新闻名称:Python中numpy中any()和all()的使用方法
标题来源:http://cdkjz.cn/article/iiejgi.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220