这篇文章给大家分享的是有关Java位运算的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
成都创新互联是一家集网站建设,兰州企业网站建设,兰州品牌网站建设,网站定制,兰州网站建设报价,网络营销,网络优化,兰州网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。
位运算表达式由操作数和位运算符组成,实现对整数类型的二进制数进行位运算。位运算符可以分为逻辑运算符(包括~、&、|和^)及移位运算符(包括>>、<<和>>>)。
1)左移位运算符(<<)能将运算符左边的运算对象向左移动运算符右侧指定的位数(在低位补0)。 2)“有符号”右移位运算符(>>)则将运算符左边的运算对象向右移动运算符右侧指定的位数。 “有符号”右移位运算符使用了“符号扩展”:若值为正,则在高位插入0;若值为负,则在高位插入1。 3)Java也添加了一种“无符号”右移位运算符(>>>),它使用了“零扩展”:无论正负,都在高位插入0。这一运算符是C或C++没有的。 4)若对char,byte或者short进行移位处理,那么在移位进行之前,它们会自动转换成一个int。 只有右侧的5个低位才会用到。这样可防止我们在一个int数里移动不切实际的位数。 若对一个long值进行处理,最后得到的结果也是long。此时只会用到右侧的6个低位,防止移动超过long值里现成的位数。 但在进行“无符号”右移位时,也可能遇到一个问题。若对byte或short值进行右移位运算,得到的可能不是正确的结果(Java 1.0和Java 1.1特别突出)。 它们会自动转换成int类型,并进行右移位。但“零扩展”不会发生,所以在那些情况下会得到-1的结果。
在进行位运算时,需要注意几点:
(1)>>>和>>的区别是:在执行运算时,>>>运算符的操作数高位补0,而>>运算符的操作数高位移入原来高位的值。 (2)右移一位相当于除以2,左移一位(在不溢出的情况下)相当于乘以2;移位运算速度高于乘除运算。 (3)若进行位逻辑运算的两个操作数的数据长度不相同,则返回值应该是数据长度较长的数据类型。 (4)按位异或可以不使用临时变量完成两个值的交换,也可以使某个整型数的特定位的值翻转。 (5)按位与运算可以用来屏蔽特定的位,也可以用来取某个数型数中某些特定的位。 (6)按位或运算可以用来对某个整型数的特定位的值置1。
~的优先级最高,其次是<<、>>和>>>,再次是&,然后是^,优先级最低的是|。
1.判断int型变量a是奇数还是偶数
a&1 == 0 偶数 a&1 == 1 奇数
2.求平均值,比如有两个int类型变量x、y,首先要求x+y的和,再除以2,但是有可能x+y的结果会超过int的最大表示范围。
(x&y)+((x^y)>>1);
知识点:>>n 相当于除于2^n ,<3.对于一个大于0的整数,判断它是不是2的几次方
((x&(x-1))==0)&&(x!=0); /*如果是2的幂,n一定是100... n-1就是1111.... 所以做与运算结果为0*/4.比如有两个int类型变量x、y,要求两者数字交换,位运算的实现方法
x ^= y; y ^= x; x ^= y;5.求绝对值
int abs( int x ) { int y ; y = x >> 31 ; return (x^y)-y ; //or: (x+y)^y }6.取模运算,采用位运算实现
a % (2^n) 等价于 a & (2^n - 1) ;或者 m % n 等价于 m & (n-1)7.乘法运算 采用位运算实现
a * (2^n) 等价于 a << n8.除法运算转化成位运算
a / (2^n) 等价于 a>> n9.求相反数
(~x+1)10.a % 2 等价于
a & 111.取int型变量a的第k位 (k=0,1,2……sizeof(int))
a>>k&1 (先右移再与1)12.将int型变量a的第k位清0
a&~(1<13.将int型变量a的第k位置1
a|(1<14.int型变量循环左移k次
a<>16-k (设sizeof(int)=16) 15.int型变量a循环右移k次
a>>k|a<<16-k (设sizeof(int)=16)16.对于一个数 x >= 0,判断是不是2的幂。
boolean isPower2(int x) { return ((x&(x-1))==0) && (x!=0); }17.不用temp交换两个整数
void swap(int x , int y) { x ^= y; y ^= x; x ^= y; }18.条件判断赋值简写
if (x == a) x= b; else x= a; 等价于 x= a ^ b ^ x;19.x的相反数
(~x+1)20.m乘以2的n次方
m << n21.m除以以2的n次方
m >> n22.求整数k从x位(高)到y位(低)间共有多少个1
public static int findChessNum(int x, int y, int k) { int result = 0; for (int i = y; i <= x; i++) { result += ((k >> (i - 1)) & 1); } return result; }23.取绝对值
int abs(int n){ return (n ^ (n >> 31)) - (n >> 31); } /* n>>31 取得n的符号,若n为正数,n>>31等于0,若n为负数,n>>31等于-1 若n为正数 n^0=0,数不变,若n为负数有n^-1 需要计算n和-1的补码,然后进行异或运算, 结果n变号并且为n的绝对值减1,再减去-1就是绝对值 */24.只出现一次的数字
给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
说明:你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
示例 1:输入: [2,2,1]输出: 1示例 2:
输入: [4,1,2,1,2]输出: 4这个题首先想到的就是异或的特性。相同的数字异或的结果为 0,那么出现奇数次的一定就是最后我们想要的结果。
public int singleNum(int[] nums){ int res = num[0]; for(int i=1;i总结
功能 示例 位运算 去掉最后一位 (101101->10110) x >> 1 在最后加一个0 (101101->1011010) x < < 1 在最后加一个1 (101101->1011011) x < < 1+1 把最后一位变成1 (101100->101101) x | 1 把最后一位变成0 (101101->101100) x | 1-1 最后一位取反 (101101->101100) x ^ 1 把右数第k位变成1 (101001->101101,k=3) x | (1 < < (k-1)) 把右数第k位变成0 (101101->101001,k=3) x & ~ (1 < < (k-1)) 右数第k位取反 (101001->101101,k=3) x ^ (1 < < (k-1)) 取末三位 (1101101->101) x & 7 取末k位 (1101101->1101,k=5) x & ((1 < < k)-1) 取右数第k位 (1101101->1,k=4) x >> (k-1) & 1 把末k位变成1 (101001->101111,k=4) x | (1 < < k-1) 末k位取反 (101001->100110,k=4) x ^ (1 < < k-1) 把右边连续的1变成0 (100101111->100100000) x & (x+1) 把右起第一个0变成1 (100101111->100111111) x | (x+1) 把右边连续的0变成1 (11011000->11011111) x | (x-1) 取右边连续的1 (100101111->1111) (x ^ (x+1)) >> 1 去掉右起第一个1的左边 (100101000->1000) x & (x ^ (x-1)) 判断奇数 (x&1)==1 判断偶数 (x&1)==0 感谢各位的阅读!关于“Java位运算的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
本文名称:Java位运算的示例分析
当前地址:http://cdkjz.cn/article/ihpcei.html