/***************** WZ ASUST 2016 二叉树 的结点计算 配图 栈实现非递归 栈内元素变化图 ******************/ #include#include #include #include using namespace std; typedef struct BinNode{ char data; bool flag; //后序非递归中的标记 struct BinNode *lchild,*rchild; }BinNode,*BinTree; //按先序创建树 // char ss[]="12##3##"; char ss[]="124##x##3y##5##"; //char ss[]="124###3#5##"; /************************* * 1 * 2 3 * 4 5 *************************/ int i=0; void creatTree(BinTree &T) { char c; // cin>>c; c=ss[i++]; if(c=='#') T=NULL; else{ // T=(BinTree)malloc(sizeof(BinNode)); T=new BinNode; T->data=c; creatTree(T->lchild); creatTree(T->rchild); } } void visit(BinTree T) { if(T->data!='#') cout< data<<" "; } void preOrder(BinTree T) //前序递归 { if(T) { visit(T); preOrder(T->lchild); preOrder(T->rchild); } } void inOrder(BinTree T) //中序递归 { if(T) { inOrder(T->lchild); visit(T); inOrder(T->rchild); } } void postOrder(BinTree T) //后序递归 { if(T) { postOrder(T->lchild); postOrder(T->rchild); visit(T); } } void preOrderUnrec(BinTree T) //非递归前序遍历 { BinTree p; p=T; stack s; while(p || !s.empty()) { while(p) { visit(p); s.push(p); p=p->lchild; } if(!s.empty()) { p=s.top(); s.pop(); p=p->rchild; } } } void inOrderUnrec(BinTree T) ////非递归中序遍历 { BinTree p; p=T; stack s; while(p || !s.empty()) { while(p) { s.push(p); p=p->lchild; } if(!s.empty()) { p=s.top(); visit(p); s.pop(); p=p->rchild; } } } void postOrderUnrec1(BinTree T) //非递归后序遍历 这个思路更好理解一些,下面有解释 { BinTree p,cur; p=T; stack s; s.push(p); BinTree pre=NULL; while(!s.empty()) { cur=s.top(); if((cur->lchild==NULL && cur->rchild==NULL)||((pre!=NULL)&&(pre==cur->lchild || pre==cur->rchild))) { visit(cur); s.pop(); pre=cur; } else { if(cur->rchild) s.push(cur->rchild); if(cur->lchild) s.push(cur->lchild); } } } void postOrderUnrec2(BinTree T) //非递归后序遍历 { BinTree cur,p; p=T; p->flag=false; stack s; s.push(p); while(!s.empty()) { cur=s.top(); if(cur->flag==true) { visit(cur); s.pop(); } else { if(cur->rchild){ cur->rchild->flag=false; s.push(cur->rchild); } if(cur->lchild){ cur->lchild->flag=false; // 左右节点为NULL时,开始要出栈 s.push(cur->lchild); } cur->flag=true; //左右子节点入栈后,父节点标记为TRUE } } } void postOrderUnrec3(BinTree T) { BinTree cur,p; p=T; queue q; q.push(p); while(!q.empty()) { cur=q.front(); visit(cur); q.pop(); if(cur->lchild!=NULL) q.push(cur->lchild); if(cur->rchild!=NULL) q.push(cur->rchild); } } void postOrderUnrec4(BinTree T) //非递归后序遍历 不宜用带计数器实现 { BinTree cur,p; p=T; BinTree q[10]; int f=0;int r=1; while(f lchild!=NULL)q[r++]=p->lchild; if(p->rchild!=NULL)q[r++]=p->rchild; if(r%2==1)f++;//cout< data=c; } BinTree cur=T; queue q; q.push(cur); while(!q.empty()) { cur=q.front(); q.pop(); if(c=='#') cur->lchild=NULL; else { cur->lchild=new BinNode; T->data=c; q.push(cur->lchild);} if(c=='#') cur->rchild=NULL; else { cur->rchild=new BinNode; T->data=c; q.push(cur->rchild);} } } void print_as_tree(BinTree T,int lay) { if(T) { print_as_tree(T->rchild,lay+1); for(int j=0;j data< lchild,lay+1); } else return; } size_t count_on_klay(BinTree root,size_t k) { //假设参数合法; if(NULL==root) return 0; if(k==1) return 1; return count_on_klay(root->lchild,k-1)+count_on_klay(root->rchild,k-1); } size_t count_to_klay(BinTree root,size_t k) { //假设参数合法; size_t count=0; for(int i=1;i<=k;i++) count+=count_on_klay(root,i); return count; } int main() { BinTree T; creatTree(T); preOrder(T);cout<
当前标题:小代码二叉树非递归与结点计算
本文网址:http://cdkjz.cn/article/igcodj.html