资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python函数拟合曲线,拟合曲线方程式

怎么用Python将图像边界用最小二乘法拟合成曲线

本文实例讲述了Python基于最小二乘法实现曲线拟合。分享给大家供大家参考,具体如下:

创新互联主要从事成都网站制作、网站设计、外贸网站建设、网页设计、企业做网站、公司建网站等业务。立足成都服务朝阳,十载网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18982081108

这里不手动实现最小二乘,调用scipy库中实现好的相关优化函数。

考虑如下的含有4个参数的函数式:

构造数据

?

123456789101112131415

import numpy as npfrom scipy import optimizeimport matplotlib.pyplot as pltdef logistic4(x, A, B, C, D):  return (A-D)/(1+(x/C)**B)+Ddef residuals(p, y, x):  A, B, C, D = p  return y - logisctic4(x, A, B, C, D)def peval(x, p):  A, B, C, D = p  return logistic4(x, A, B, C, D)A, B, C, D = .5, 2.5, 8, 7.3x = np.linspace(0, 20, 20)y_true = logistic4(x, A, B, C, D)y_meas = y_true + 0.2 * np.random.randn(len(y_true))

调用工具箱函数,进行优化

?

1234

p0 = [1/2]*4plesq = optimize.leastsq(residuals, p0, args=(y_meas, x))            # leastsq函数的功能其实是根据误差(y_meas-y_true)            # 估计模型(也即函数)的参数

绘图

?

12345678

plt.figure(figsize=(6, 4.5))plt.plot(x, peval(x, plesq[0]), x, y_meas, 'o', x, y_true)plt.legend(['Fit', 'Noisy', 'True'], loc='upper left')plt.title('least square for the noisy data (measurements)')for i, (param, true, est) in enumerate(zip('ABCD', [A, B, C, D], plesq[0])):  plt.text(11, 2-i*.5, '{} = {:.2f}, est({:.2f}) = {:.2f}'.format(param, true, param, est))plt.savefig('./logisitic.png')plt.show()

希望本文所述对大家Python程序设计有所帮助。

Python 中的函数拟合

很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)

本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。

通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。

运行结果:

对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。

运行结果:

python_numpy最小二乘法的曲线拟合

在了解了最小二乘法的基本原理之后 python_numpy实用的最小二乘法理解 ,就可以用最小二乘法做曲线拟合了

从结果中可以看出,直线拟合并不能对拟合数据达到很好的效果,下面我们介绍一下曲线拟合。

b=[y1]

[y2]

......

[y100]

解得拟合函数的系数[a,b,c.....d]

CODE:

根据结果可以看到拟合的效果不错。

我们可以通过改变

来调整拟合效果。

如果此处我们把拟合函数改为最高次为x^20的多项式

所得结果如下:

矫正 过拟合 现象

在保持拟合函数改为最高次为x^20的多项式的条件下,增大样本数:

通过结果可以看出,过拟合现象得到了改善。

Python 怎么用曲线拟合数据

Python中利用guiqwt进行曲线数据拟合。

示例程序:

图形界面如下:


当前标题:python函数拟合曲线,拟合曲线方程式
文章转载:http://cdkjz.cn/article/hsegeg.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220