为了大家更容易理解我举出的SQL语句,本文假定已经建立了一个学生成绩管理数据库,全文均以学生成绩的管理为例来描述。
创新互联建站于2013年成立,先为阳明等服务建站,阳明等地企业,进行企业商务咨询服务。为阳明企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
1.在查询结果中显示列名:
a.用as关键字:select name as '姓名' from students order by age
b.直接表示:select name '姓名' from students order by age
2.精确查找:
a.用in限定范围:select * from students where native in ('湖南', '四川')
b.betweenand:select * from students where age between 20 and 30
c.“=”:select * from students where name = '李山'
d.like:select * from students where name like '李%' (注意查询条件中有“%”,则说明是部分匹配,而且还有先后信息在里面,即查找以“李”开头的匹配项。所以若查询有“李”的所有对象,应该命令:'%李%';若是第二个字为李,则应为'_李%'或'_李'或'_李_'。)
e.[]匹配检查符:select * from courses where cno like '[AC]%' (表示或的关系,与"in()"类似,而且"[]"可以表示范围,如:select * from courses where cno like '[A-C]%')
3.对于时间类型变量的处理
a.smalldatetime:直接按照字符串处理的方式进行处理,例如:
select * from students where birth = '1980-1-1' and birth = '1980-12-31'
4.集函数
a.count()求和,如:select count(*) from students (求学生总人数)
b.avg(列)求平均,如:select avg(mark) from grades where cno=’B2’
c.max(列)和min(列),求最大与最小
5.分组group
常用于统计时,如分组查总数:
select gender,count(sno)
from students
group by gender
查看男女学生各有多少)
注意:从哪种角度分组就从哪列"group by"
对于多重分组,只需将分组规则罗列。比如查询各届各专业的男女同学人数,那么分组规则有:届别(grade)、专业(mno)和性别(gender),所以有"group by grade, mno, gender"select grade, mno, gender, count(*)
from students
group by grade, mno, gender
通常group还和having联用,比如查询1门课以上不及格的学生,则按学号(sno)分类有:
select sno,count(*) from grades
where mark60
group by sno
having count(*)1
6.UNION联合
并查询结果,如:
SELECT * FROM students
WHERE name like ‘张%’
UNION [ALL]
SELECT * FROM students
WHERE name like ‘李%’
7.多表查询
a.内连接
select g.sno,s.name,c.coursename
from grades g JOIN students s ON g.sno=s.sno
JOIN courses c ON g.cno=c.cno
(注意可以引用别名)
b.外连接
b1.左连接
select courses.cno,max(coursename),count(sno)
from courses LEFT JOIN grades ON courses.cno=grades.cno
group by courses.cno
左连接特点:显示全部左边表中的所有项目,即使其中有些项中的数据未填写完全。
左外连接返回那些存在于左表而右表中却没有的行,再加上内连接的行。
b2.右连接
与左连接类似
b3.全连接
select sno,name,major
from students FULL JOIN majors ON students.mno=majors.mno
两边表中的内容全部显示
c.自身连接
select c1.cno,c1.coursename,c1.pno,c2.coursename
from courses c1,courses c2 where c1.pno=c2.cno
采用别名解决问题。
d.交叉连接
select lastname+firstname from lastname CROSS JOIN firstanme
相当于做笛卡儿积
8.嵌套查询
a.用关键字IN,如查询李山的同乡:
select * from students
where native in (select native from students where name=’ 李山’)
b.使用关键字EXIST,比如,下面两句是等价的:
select * from students
where sno in (select sno from grades where cno=’B2’)
select * from students where exists
(select * from grades where
grades.sno=students.sno AND cno=’B2’)
9.关于排序order
a.对于排序order,有两种方法:asc升序和desc降序
b.对于排序order,可以按照查询条件中的某项排列,而且这项可用数字表示,如:
select sno,count(*) ,avg(mark) from grades
group by sno
having avg(mark)85
order by 3
10.其他
a.对于有空格的识别名称,应该用"[]"括住。
b.对于某列中没有数据的特定查询可以用null判断,如select sno,courseno from grades where mark IS NULL
c.注意区分在嵌套查询中使用的any与all的区别,any相当于逻辑运算“||”而all则相当于逻辑运算“”
d.注意在做否定意义的查询是小心进入陷阱:
如,没有选修‘B2’课程的学生 :
select students.*
from students, grades
where students.sno=grades.sno
AND grades.cno ’B2’
上面的查询方式是错误的,正确方式见下方:
select * from students
where not exists (select * from grades
where grades.sno=students.sno AND cno='B2')
11.关于有难度多重嵌套查询的解决思想:
如,选修了全部课程的学生:
select *
from students
where not exists ( select *
from courses
where NOT EXISTS
(select *
from grades
where sno=students.sno
AND cno=courses.cno))
最外一重:从学生表中选,排除那些有课没选的。用not exist。由于讨论对象是课程,所以第二重查询从course表中找,排除那些选了课的即可。
当为大家描述我们的整体服务架构时,最常见的两个问题是:
为什么采用结构化方式将数据存储在SQL数据库中,而不使用NoSQL平台?
为什么自己维护数据中心,而不将Evernote托管到云服务提供商?
这两个问题都很有趣,我们先来探讨第一个。
对特定的应用而言,相比一个单一的SQL实例,一个现代的键值存储引擎具备显著的性能优势和可扩展性。
CREATE TABLE notebooks ( id int UNSIGNED NOT NULL PRIMARY KEY, guid binary(16) NOT NULL, user_id int UNSIGNED NOT NULL, name varchar(100) COLLATE utf8_bin NOT NULL, ... ) ENGINE=InnoDB DEFAULT CHARSET=utf8; CREATE TABLE notes ( id int UNSIGNED NOT NULL PRIMARY KEY, guid binary(16) NOT NULL, user_id int UNSIGNED NOT NULL, notebook_id int UNSIGNED NOT NULL, title varchar(255) NOT NULL, ... FOREIGN KEY (notebook_id) REFERENCES notebooks(id) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
如果你在Windows客户端上创建了一个名为“Cooking”的记事本,并立即在其中粘贴了一个名为“Quick Tomato Sauce”的食谱,客户端会立刻进行如下同步:
调用NoteStore.createNotebook() 请求服务器创建记事本,并返回以创建记事本的GUID。
通过指定记事本的GUID,调用NoteStore.createNote()在记事本中创建笔记。
每次API调用都通过SQL事物予以实现,可以让客户端完全信任服务器的任何提示。ACID兼容的数据库可以做到这些:
原子性(Atomicity):如果API调用成功,那么所有的改动都会保存;如果API调用失败,所有的改动都不会提交。
一致性(Consistency): 在API调用完成后,所有的账户都可用,并能保证内部状态的一致性。每篇笔记都与记事本相关联,以避免出现孤立项。数据库不允许删除关联有记事的记事本,这得感谢FOREIGN KEY约束。
持久性(Durability):当服务器发送记事本已创建完毕的回执后,客户端会认为它的存在具有持久性,以便进行后续的操作。变更的持久性,可以让客户端知道在任何时刻对服务状态的影响都能保持一致性。
对我们的同步协议而言,持久性最为重要。如果客户端不能确定服务器端的变更具有持久性,那么协议将会变得复杂而低效。
“大数据”问题
得益于事务处理的数据库的ACID属性,同样使得数据集非常难以扩展,以超出单台服务器的范围。数据库集群和多主复制技术并不理想,键值存储为实现可扩展性提供了一条捷径。
所幸,Evernote暂时不需要考虑这个问题。即便是我们有近10亿的笔记,和近20亿的资源文件,这也并不能称得上是一个大数据集。通过按用户分区,它被划分成了2千万个独立的数据集。
我们尚未遇到所谓“大数据”引发的问题,倒是遇到了许多“中数据”的存储问题,这就是通过规整分区形成的分片存储架构。
也许以后……
我们对新的存储系统非常感兴趣,非常乐意应用在哪些对ACID要求不强,但确实需要横向扩展的新项目中。例如,我们的报告分析系统已经逐渐超出了MySQL平台的承受力,需要被更快、更先进的系统所取代。
我们现在对以Evernote用户元数据为基础的MySQL分片存储颇为满意,尽管这不会引起那些IT弄潮儿的兴趣。
随着大数据分析市场迅速扩展,哪些技术是最有需求和最有增长潜力的呢?在Forrester Research的一份最新研究报告中,评估了22种技术在整个数据生命周期中的成熟度和轨迹。这些技术都对大数据的实时、预测和综合洞察有着巨大的贡献。
1. 预测分析技术
这也是大数据的主要功能之一。预测分析允许公司通过分析大数据源来发现、评估、优化和部署预测模型,从而提高业务性能或降低风险。同时,大数据的预测分析也与我们的生活息息相关。淘宝会预测你每次购物可能还想买什么,爱奇艺正在预测你可能想看什么,百合网和其他约会网站甚至试图预测你会爱上谁……
2. NoSQL数据库
NoSQL,Not Only SQL,意思是“不仅仅是SQL”,泛指非关系型数据库。NoSQL数据库提供了比关系数据库更灵活、可伸缩和更便宜的替代方案,打破了传统数据库市场一统江山的格局。并且,NoSQL数据库能够更好地处理大数据应用的需求。常见的NoSQL数据库有HBase、Redis、MongoDB、Couchbase、LevelDB等。
3. 搜索和知识发现
支持来自于多种数据源(如文件系统、数据库、流、api和其他平台和应用程序)中的大型非结构化和结构化数据存储库中自助提取信息的工具和技术。如,数据挖掘技术和各种大数据平台。
4. 大数据流计算引擎
能够过滤、聚合、丰富和分析来自多个完全不同的活动数据源的数据的高吞吐量的框架,可以采用任何数据格式。现今流行的流式计算引擎有Spark Streaming和Flink。
5. 内存数据结构
通过在分布式计算机系统中动态随机访问内存(DRAM)、闪存或SSD上分布数据,提供低延迟的访问和处理大量数据。
6. 分布式文件存储
为了保证文件的可靠性和存取性能,数据通常以副本的方式存储在多个节点上的计算机网络。常见的分布式文件系统有GFS、HDFS、Lustre 、Ceph等。
7. 数据虚拟化
数据虚拟化是一种数据管理方法,它允许应用程序检索和操作数据,而不需要关心有关数据的技术细节,比如数据在源文件中是何种格式,或者数据存储的物理位置,并且可以提供单个客户用户视图。
8. 数据集成
用于跨解决方案进行数据编排的工具,如Amazon Elastic MapReduce (EMR)、Apache Hive、Apache Pig、Apache Spark、MapReduce、Couchbase、Hadoop和MongoDB等。
9. 数据准备
减轻采购、成形、清理和共享各种杂乱数据集的负担的软件,以加速数据对分析的有用性。
10. 数据质量
使用分布式数据存储和数据库上的并行操作,对大型高速数据集进行数据清理和充实的产品。
像MongoDB, Cassandra, HBase, DynamoDB, 和
Riak这些NoSQL缺乏传统的原子事务机制,所谓原子事务机制是可以保证一系列写操作要么全部完成,要么全部不会完成,不会发生只完成一系列中一两个
写操作;因为数据库不提供这种事务机制支持,开发者需要自己编写代码来确保一系列写操作的事务机制,比较复杂和测试。
这些NoSQL数据库不提供事务机制原因在于其分布式特点,一系列写操作中访问的数据可能位于不同的分区服务器,这样的事务就变成分布式事务,在分
布式事务中实现原子性需要彼此协调,而协调是耗费时间的,每台机器在一个大事务过程中必须依次确认,这就需要一种协议确保一个事务中没有任何一台机器写操
作失败。
这种协调是昂贵的,会增加延迟时间,关键问题是,当协调没有完成时,其他操作是不能读取事务中写操作结果的,这是因为事务的all-or-
nothing原理导致,万一协调过程发现某个写操作不能完成,那么需要将其他写操作成功的进行回滚。针对分布式事务的分布式协调对整体数据库性能有严重
影响,不只是吞吐量还包括延迟时间,这样大部分NoSQL数据库因为性能问题就选择不提供分布式事务。
MongoDB, Riak, HBase, 和 Cassandra提供基于单一键的事务,这是因为所有信息都和一个键key有关,这个键是存储在单个服务器上,这样基于单键的事务不会带来复杂的分布式协调。
那么看来扩展性性能和分布式事务是一对矛盾,总要有取舍?实际上是不完全是,现在完全有可能提供高扩展的性能同时提供分布式原子事务。
FIT是这样一个在分布式系统提供原子事务的策略,在fairness公平性, isolation隔离性, 和throughput吞吐量(简称FIT)可以权衡。
一个支持分布式事务的可伸缩分布式系统能够完成这三个属性中两个,公平是事务之间不会相互影响造成延迟;隔离性提供一种幻觉好像整个数据库只有它自
己一个事务,隔离性保证当任何同时发生的事务发生冲突时,能够保证彼此能看到彼此的写操作结果,因此减轻了程序员为避免事务读写冲突的强逻辑推理要求;吞
吐量是指每单元时间数据库能够并发处理多少事务。
FIT是如下进行权衡:
保证公平性fairness 和隔离性isolation, 但是牺牲吞吐量
保证公平性fairness和吞吐量, 牺牲隔离性isolation
保证隔离性isolation和吞吐量throughput, 但是牺牲公平性fairness.
牺牲公平性:放弃公平性,数据库能有更多机会降低分布式事务的成本,主要成本是分布式协调带来的,也就是说,不需要在每个事务过程内对每个机器都依
次确认事务完成,这样排队式的确认commit事务是很浪费时间的,放弃公平性,意味着可以在事务外面进行协调,这样就只是增加了协调时间,不会增加互相
冲突事务因为彼此冲突而不能运行所耽搁的时间,当系统不需要公平性时,需要根据事务的优先级或延迟等标准进行指定先后执行顺序,这样就能够获得很好的吞吐
量。
G-Store是一种放弃公平性的 Isolation-Throughput
的分布式key-value存储,支持多键事务(multi-key transactions),MongoDB 和
HBase在键key在同样分区上也支持多键事务,但是不支持跨分区的事务。
总之:传统分布式事务性能不佳的原因是确保原子性(分布式协调)和隔离性同时重叠,创建一个高吞吐量分布式事务的关键是分离这两种关注,这种分离原
子性和隔离性的视角将导致两种类型的系统,第一种选择是弱隔离性能让冲突事务并行执行和确认提交;第二个选择重新排序原子性和隔离性机制保证它们不会某个
时间重叠,这是一种放弃公平的事务执行,所谓放弃公平就是不再同时照顾原子性和隔离性了,有所倾斜,放弃高标准道德要求就会带来高自由高效率。
《深入NoSQL》(Shashank Tiwari)电子书网盘下载免费在线阅读
链接:
提取码: 7n4x
书名:深入NoSQL
作者:Shashank Tiwari
译者:巨成
豆瓣评分:6.1
出版社:人民邮电出版社
出版年份:2012-11
页数:294
内容简介:
《深入NoSQL》是一本全面的NoSQL实践指南。书中主要关注NoSQL的基本概念,以及使用NoSQL数据库的切实可行的解决方案。书中介绍了基于MapReduce的可伸缩处理,演示Hadoop用例,还有Hive和Pig这样的高层抽象。包含许多用例演示,同时也会讨论Google、Amazon、Facebook、Twitter和LinkedIn的可伸缩数据架构。
作者简介:
Shashank Tiwari
创业者、开发者、技术作家、演讲者和导师,技术型创业公司Treasury of Ideas()的创始人。
他是一位经验丰富的软件开发者和企业家,长期关注高性能应用、分析、Web应用以及移动平台,对数据可视化和统计机器学习有着浓厚的兴趣,喜欢喝咖啡、吃甜点、骑自行车。他撰写了许多技术文章和著作,并且应邀在全球各地的技术会议上进行演讲。
简单来说,从大数据的生命周期来看,无外乎四个方面:大数据采集、大数据预处理、大数据存储、大数据分析,共同组成了大数据生命周期里最核心的技术,下面分开来说:
一、大数据采集
大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。
数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。
网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。
文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。
二、大数据预处理
大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。
数据清理:指利用ETL等清洗工具,对有遗漏数据(缺少感兴趣的属性)、噪音数据(数据中存在着错误、或偏离期望值的数据)、不一致数据进行处理。
数据集成:是指将不同数据源中的数据,合并存放到统一数据库的,存储方法,着重解决三个问题:模式匹配、数据冗余、数据值冲突检测与处理。
数据转换:是指对所抽取出来的数据中存在的不一致,进行处理的过程。它同时包含了数据清洗的工作,即根据业务规则对异常数据进行清洗,以保证后续分析结果准确性。
数据规约:是指在最大限度保持数据原貌的基础上,最大限度精简数据量,以得到较小数据集的操作,包括:数据方聚集、维规约、数据压缩、数值规约、概念分层等。
三、大数据存储
大数据存储,指用存储器,以数据库的形式,存储采集到的数据的过程,包含三种典型路线:
1、基于MPP架构的新型数据库集群
采用Shared Nothing架构,结合MPP架构的高效分布式计算模式,通过列存储、粗粒度索引等多项大数据处理技术,重点面向行业大数据所展开的数据存储方式。具有低成本、高性能、高扩展性等特点,在企业分析类应用领域有着广泛的应用。
较之传统数据库,其基于MPP产品的PB级数据分析能力,有着显著的优越性。自然,MPP数据库,也成为了企业新一代数据仓库的最佳选择。
2、基于Hadoop的技术扩展和封装
基于Hadoop的技术扩展和封装,是针对传统关系型数据库难以处理的数据和场景(针对非结构化数据的存储和计算等),利用Hadoop开源优势及相关特性(善于处理非结构、半结构化数据、复杂的ETL流程、复杂的数据挖掘和计算模型等),衍生出相关大数据技术的过程。
伴随着技术进步,其应用场景也将逐步扩大,目前最为典型的应用场景:通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑,其中涉及了几十种NoSQL技术。
3、大数据一体机
这是一种专为大数据的分析处理而设计的软、硬件结合的产品。它由一组集成的服务器、存储设备、操作系统、数据库管理系统,以及为数据查询、处理、分析而预安装和优化的软件组成,具有良好的稳定性和纵向扩展性。
四、大数据分析挖掘
从可视化分析、数据挖掘算法、预测性分析、语义引擎、数据质量管理等方面,对杂乱无章的数据,进行萃取、提炼和分析的过程。
1、可视化分析
可视化分析,指借助图形化手段,清晰并有效传达与沟通信息的分析手段。主要应用于海量数据关联分析,即借助可视化数据分析平台,对分散异构数据进行关联分析,并做出完整分析图表的过程。
具有简单明了、清晰直观、易于接受的特点。
2、数据挖掘算法
数据挖掘算法,即通过创建数据挖掘模型,而对数据进行试探和计算的,数据分析手段。它是大数据分析的理论核心。
数据挖掘算法多种多样,且不同算法因基于不同的数据类型和格式,会呈现出不同的数据特点。但一般来讲,创建模型的过程却是相似的,即首先分析用户提供的数据,然后针对特定类型的模式和趋势进行查找,并用分析结果定义创建挖掘模型的最佳参数,并将这些参数应用于整个数据集,以提取可行模式和详细统计信息。
3、预测性分析
预测性分析,是大数据分析最重要的应用领域之一,通过结合多种高级分析功能(特别统计分析、预测建模、数据挖掘、文本分析、实体分析、优化、实时评分、机器学习等),达到预测不确定事件的目的。
帮助分用户析结构化和非结构化数据中的趋势、模式和关系,并运用这些指标来预测将来事件,为采取措施提供依据。
4、语义引擎
语义引擎,指通过为已有数据添加语义的操作,提高用户互联网搜索体验。
5、数据质量管理
指对数据全生命周期的每个阶段(计划、获取、存储、共享、维护、应用、消亡等)中可能引发的各类数据质量问题,进行识别、度量、监控、预警等操作,以提高数据质量的一系列管理活动。
以上是从大的方面来讲,具体来说大数据的框架技术有很多,这里列举其中一些:
文件存储:Hadoop HDFS、Tachyon、KFS
离线计算:Hadoop MapReduce、Spark
流式、实时计算:Storm、Spark Streaming、S4、Heron
K-V、NOSQL数据库:HBase、Redis、MongoDB
资源管理:YARN、Mesos
日志收集:Flume、Scribe、Logstash、Kibana
消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ
查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
分布式协调服务:Zookeeper
集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager
数据挖掘、机器学习:Mahout、Spark MLLib
数据同步:Sqoop
任务调度:Oozie
······
想要学习更多关于大数据的知识可以加群和志同道合的人一起交流一下啊[ ]