资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python函数包 python函数包怎么安装

Python中冷门但非常好用的内置函数

Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性

站在用户的角度思考问题,与客户深入沟通,找到萧县网站设计与萧县网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都做网站、成都网站建设、企业官网、英文网站、手机端网站、网站推广、国际域名空间、虚拟主机、企业邮箱。业务覆盖萧县地区。

Counter

collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。在python3.10.1中它总共包含以下几种数据类型:

容器名简介

namedtuple() 创建命名元组子类的工厂函数

deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)

ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面

Counter 字典的子类,提供了可哈希对象的计数功能

OrderedDict 字典的子类,保存了他们被添加的顺序

defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值

UserDict 封装了字典对象,简化了字典子类化

UserList 封装了列表对象,简化了列表子类化

UserString 封装了字符串对象,简化了字符串子类化

其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读。Counter类继承dict类,所以它能使用dict类里面的方法

举例

#统计词频

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

result = {}

for fruit in fruits:

if not result.get(fruit):

result[fruit] = 1

else:

result[fruit] += 1

print(result)

#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:

from collections import Counter

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

c = Counter(fruits)

print(dict(c))

#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了,也更容易阅读和维护了。

elements()

返回一个迭代器,其中每个元素将重复出现计数值所指定次。元素会按首次出现的顺序返回。如果一个元素的计数值小于1,elements()将会忽略它。

c = Counter(a=4, b=2, c=0, d=-2)

sorted(c.elements())

['a', 'a', 'a', 'a', 'b', 'b']most_common([n])

返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序。如果n被省略或为None,most_common()将返回计数器中的所有元素。计数值相等的元素按首次出现的顺序排序:

Counter('abracadabra').most_common(3)

[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档

实战

Leetcode 1002.查找共用字符

给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回。你可以按任意顺序返回答案。

输入:words = ["bella", "label", "roller"]

输出:["e", "l", "l"]

输入:words = ["cool", "lock", "cook"]

输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数

class Solution:

def commonChars(self, words: List[str]) - List[str]:

from collections import Counter

ans = Counter(words[0])

for i in words[1:]:

ans = Counter(i)

return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的

sorted

在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表

对列表升序操作:

a = sorted([2, 4, 3, 7, 1, 9])

print(a)

# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:

sorted((4,1,9,6),reverse=True)

print(a)

# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:

fruits = ['apple', 'watermelon', 'pear', 'banana']

a = sorted(fruits, key = lambda x : len(x))

print(a)

# 输出:['pear', 'apple', 'banana', 'watermelon']all

all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False外都算True。注意:空元组、空列表返回值为True。

all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0

True

all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素

False

all([0, 1,2, 3]) # 列表list,存在一个为0的元素

False

all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0

True

all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素

False

all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素

False

all([]) # 空列表

True

all(()) # 空元组

Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False。如果全为空,0,False,则返回False;如果不全为空,则返回True。

F-strings

在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:

s1='Hello'

s2='World'

print(f'{s1} {s2}!')

# Hello World!在F-strings中我们也可以执行函数:

def power(x):

return x*x

x=4

print(f'{x} * {x} = {power(x)}')

# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多,书写起来也更加简单。

本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~

python常用函数包有哪些?

一些python常用函数包:

1、Urllib3

Urllib3是一个 Python 的 HTTP 客户端,它拥有 Python 标准库中缺少的许多功能:

线程安全

连接池

客户端 SSL/TLS 验证

使用分段编码上传文件

用来重试请求和处理 HTTP 重定向的助手

支持 gzip 和 deflate 编码

HTTP 和 SOCKS 的代理支持

2、Six

six 是一个是 Python 2 和 3 的兼容性库。这个项目旨在支持可同时运行在 Python 2 和 3 上的代码库。它提供了许多可简化 Python 2 和 3 之间语法差异的函数。

3、botocore、boto3、s3transfer、awscli

Botocore是 AWS 的底层接口。Botocore是 Boto3 库(#22)的基础,后者让你可以使用 Amazon S3 和 Amazon EC2 一类的服务。Botocore 还是 AWS-CLI 的基础,后者为 AWS 提供统一的命令行界面。

S3transfer(#7)是用于管理 Amazon S3 传输的 Python 库。它正在积极开发中,其介绍页面不推荐人们现在使用,或者至少等版本固定下来再用,因为其 API 可能发生变化,在次要版本之间都可能更改。Boto3、AWS-CLI和其他许多项目都依赖s3transfer。

4、Pip

pip是“Pip Installs Packages”的首字母递归缩写。

pip很容易使用。要安装一个包只需pip install package name即可,而删除包只需pip uninstall package name即可。

最大优点之一是它可以获取包列表,通常以requirements.txt文件的形式获取。该文件能选择包含所需版本的详细规范。大多数 Python 项目都包含这样的文件。

如果结合使用pip与virtualenv(列表中的 #57),就可以创建可预测的隔离环境,同时不会干扰底层系统,反之亦然。

5、Python-dateutil

python-dateutil模块提供了对标准datetime模块的强大扩展。我的经验是,常规的Python datetime缺少哪些功能,python-dateutil就能补足那一块。

6、Requests

Requests建立在我们的 #1 库——urllib3基础上。它让 Web 请求变得非常简单。相比urllib3来说,很多人更喜欢这个包。而且使用它的最终用户可能也比urllib3更多。后者更偏底层,并且考虑到它对内部的控制级别,它一般是作为其他项目的依赖项。

7、Certifi

近年来,几乎所有网站都转向 SSL,你可以通过地址栏中的小锁符号来识别它。加了小锁意味着与该站点的通信是安全和加密的,能防止窃听行为。

8、Idna

根据其 PyPI 页面,idna提供了“对 RFC5891 中指定的应用程序中国际化域名(IDNA)协议的支持。”

IDNA的核心是两个函数:ToASCII和ToUnicode。ToASCII会将国际 Unicode 域转换为 ASCII 字符串。ToUnicode则逆转该过程。在IDNA包中,这些函数称为idna.encode()和idna.decode()

9、PyYAML

YAML是一种数据序列化格式。它的设计宗旨是让人类和计算机都能很容易地阅读代码——人类很容易读写它的内容,计算机也可以解析它。

PyYAML是 Python 的YAML解析器和发射器,这意味着它可以读写YAML。它会把任何 Python 对象写成YAML:列表、字典,甚至是类实例都包括在内。

10、Pyasn1

像上面的IDNA一样,这个项目也非常有用:

ASN.1 类型和 DER/BER/CER 编码(X.208)的纯 Python 实现

所幸这个已有数十年历史的标准有很多信息可用。ASN.1是 Abstract Syntax Notation One 的缩写,它就像是数据序列化的教父。它来自电信行业。也许你知道协议缓冲区或 Apache Thrift?这就是它们的 1984 年版本。

11、Docutils

Docutils是一个模块化系统,用来将纯文本文档处理为很多有用的格式,例如 HTML、XML 和 LaTeX 等。Docutils能读取reStructuredText格式的纯文本文档,这种格式是类似于 MarkDown 的易读标记语法。

12、Chardet

你可以用chardet模块来检测文件或数据流的字符集。比如说,需要分析大量随机文本时,这会很有用。但你也可以在处理远程下载的数据,但不知道用的是什么字符集时使用它。

13、RSA

rsa包是一个纯 Python 的 RSA 实现。它支持:

加密和解密

签名和验证签名

根据 PKCS#1 1.5 版生成密钥

它既可以用作 Python 库,也能在命令行中使用。

14、Jmespath

JMESPath,发音为“James path”,使 Python 中的 JSON 更容易使用。它允许你声明性地指定如何从 JSON 文档中提取元素。

15、Setuptools

它是用于创建 Python 包的工具。不过,其文档很糟糕。它没有清晰描述它的用途,并且文档中包含无效链接。最好的信息源是这个站点,特别是这个创建 Python 包的指南。

16、Pytz

像dateutils一样,这个库可帮助你处理日期和时间。有时候,时区处理起来可能很麻烦。幸好有这样的包,可以让事情变得简单些。

17、Futures

从 Python 3.2 开始,python 提供current.futures模块,可帮助你实现异步执行。futures 包是该库适用于 Python 2 的 backport。它不适用于 Python3 用户,因为 Python 3 原生提供了该模块。

18、Colorama

使用 Colorama,你可以为终端添加一些颜色:

更多Python知识请关注Python自学网

python中函数包括

1. print()函数:打印字符串

2. raw_input()函数:从用户键盘捕获字符

3. len()函数:计算字符长度

4. format(12.3654,'6.2f'/'0.3%')函数:实现格式化输出

5. type()函数:查询对象的类型

6. int()函数、float()函数、str()函数等:类型的转化函数

7. id()函数:获取对象的内存地址

8. help()函数:Python的帮助函数

9. s.islower()函数:判断字符小写

10. s.sppace()函数:判断是否为空格

11. str.replace()函数:替换字符

12. import()函数:引进库

13. math.sin()函数:sin()函数

14. math.pow()函数:计算次方函数

15. 3**4: 3的4次方

16. pow(3,4)函数:3的4次方

17. os.getcwd()函数:获取当前工作目录

18. listdir()函数:显示当前目录下的文件

19. socket.gethostbyname()函数:获得某主机的IP地址

20. urllib.urlopen(url).read():打开网络内容并存储

21. open().write()函数:写入文件

22. webbrowser.open_new_tab()函数:新建标签并使用浏览器打开指定的网页

23. def function_name(parameters):自定义函数

24. time.sleep()函数:停止一段时间

25. random.randint()函数:产生随机数

Python嵌套函数和闭包

在Python语言中,可以在函数中定义函数。 这种在函数中嵌套定义的函数也叫内部函数。我们来看下面的代码:

上述代码中,定义了函数greet,在函数greet内部又定义了一个函数inner_func, 并调用该函数打印了一串字符。

我们可以看到,内部函数inner_func的定义和使用与普通函数基本相同。需要注意的是变量的作用域,在上述代码中,函数参数name对于全局函数greet是局部变量,对内部函数inner_func来说则是非局部变量。内部函数对于非局部变量的访问规则类似于标准的外部函数访问全局变量。

从这个例子我们还可以看到内部函数的一个作用,就是通过定义内部函数的方式将一些功能隐藏起来,防止外部直接调用。常见的场景是,在一个复杂逻辑的函数中,将一些小的任务定义成内部函数,然后由这个外层函数使用,这样可以使代码更为清晰,易于维护。这些内部函数只会在这个外层函数中使用,不能被其他函数或模块使用。

在Python语言中, 函数也是对象,它可以被创建、赋值给变量,或者作为函数的返回值。我们来看下面这个例子。

在上述代码中,在函数gen_greet内部定义了inner_func函数,并返回了一个inner_func函数对象。外部函数gen_greet返回了一个函数对象,所以像gen_greet这样的函数也叫工厂函数。

在内部函数inner_func中,使用了外部函数的传参greet_words(非局部变量),以及函数的参数name(局部变量),来打印一个字符串。

接下来,调用gen_greet("Hello")创建一个函数对象say_hello,紧接着调用say_hello("Mr. Zhang"),输出的结果为:Hello, Mr. Zhang!

同样的,调用gen_greet("Hi")创建一个函数对象say_hi,调用say_hello("Mr. Zhang"),输出的结果为:Hi,Tony!

我们可以发现,gen_greet返回的函数对象具有记忆功能,它能够把所需使用的非局部变量保存下来,用于后续被调用的时候使用。这种保存了非局部变量的函数对象被称作闭包(closure)。

那么闭包是如何实现的呢?其实并不复杂,函数对象中有一个属性__closure__,它就是在创建函数对象时用来保存这些非局部变量的。

__closure__属性是一个元组或者None类型。在上述代码中,我们可以通过下面方式查看:

函数的嵌套所实现的功能大都可以通过定义类的方式来实现,而且类是更加面向对象的代码编写方式。

嵌套函数的一个主要用途是实现函数的装饰器。我们看下面的代码:

在上述代码中,logger函数返回函数with_logging,with_logging则是打印了函数func的名称及传入的参数,然后调用func, 并将参数传递给func。其中的@wraps(func)语句用于复制函数func的名称、注释文档、参数列表等等,使得with_logging函数具有被装饰的函数func相同的属性。

代码中接下来用@logger对函数power_func进行修饰,它的作用等同于下面的代码:

可见,装饰器@符其实就是上述代码的精简写法。

通过了解了嵌套函数和闭包的工作原理,我们在使用过程中就能够更加得心应手了。


网页标题:python函数包 python函数包怎么安装
文章转载:http://cdkjz.cn/article/hjhgoe.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220