一般有两种算法:
创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站建设、网站设计、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的霞浦网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!
算法一产生12个(0,1)平均分布的随机函数,用大数定理可以模拟出正态分布。
算法二用到了数学中的雅可比变换,直接生成正态分布,但此算法在计算很大规模的数时
会出现溢出错误。
测试程序:
#include math.h
#include stdio.h
#include conio.h
#include stdlib.h
#include time.h
double _random(void)
{
int a;
double r;
a=rand()%32767;
r=(a+0.00)/32767.00;
return r;
}
double _sta(double mu,double sigma)
{
int i;
double r,sum=0.0;
if(sigma=0.0) { printf("Sigma=0.0 in _sta!"); exit(1); }
for(i=1;i=12;i++)
sum = sum + _random();
r=(sum-6.00)*sigma+mu;
return r;
}
double _sta2(double mu,double sigma)
{
double r1,r2;
r1=_random();
r2=_random();
return sqrt(-2*log(r1))*cos(2*M_PI*r2)*sigma+mu ;
}
int main()
{
int i;
double mu,sigma;
srand( (unsigned)time( NULL ) );
mu=0.0;
sigma=1.0;
printf("Algorithm 1:\n");
for(i=0;i10;i++)
printf("%lf\t",_sta(mu,sigma));
printf("Algorithm 2:\n");
for(i=0;i10;i++)
printf("%lf\t",_sta2(mu,sigma));
return 0;
}
//由均匀分布的随机数得到正态分布的随机数
#include math.h
float gasdev(idum)
int *idum;
{
static int iset=0;
static float gset;
float fac,r,v1,v2;
float ran1();//产生均匀分布的随机数,可利用系统函数改写
if (iset == 0) {
do {
v1=2.0*ran1(idum)-1.0;
v2=2.0*ran1(idum)-1.0;
r=v1*v1+v2*v2;
} while (r = 1.0);
fac=sqrt(-2.0*log(r)/r);
gset=v1*fac;
iset=1;
return v2*fac;
} else {
iset=0;
return gset;
}
}
原理可找本数值算法方面的书看看。
C语言中计算一个数的N次方可以用库函数pow来实现。
函数原型:double pow(double x, double y);
功 能:计算x^y的值
返 回 值:计算结果
举例如下:
double a = pow(3.14, 2); // 计算3.14的平方
注:使用pow函数时,需要将头文件#includemath.h包含进源文件中。
double gaussian(double u) //用Box_Muller算法产生高斯分布的随机数
{
double r,t,z,x;
double s1,s2;
s1=(1.0+rand())/(RAND_MAX+1.0);
s2=(1.0+rand())/(RAND_MAX+1.0);
r=sqrt(-2*log(s2)/log(e));
t=2*pi*s1;
z=r*cos(t);
x=u+z*N;
return x;
}
以前写的一个函数,u是均值,N是方差