资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

mysql的分页怎么用 mysql分页怎么写

Mysql使用limit深度分页优化

mysql使用select * limit offset, rows分页在深度分页的情况下。性能急剧下降。

在榆阳等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供做网站、成都网站制作 网站设计制作定制网站,公司网站建设,企业网站建设,高端网站设计,成都全网营销推广,成都外贸网站制作,榆阳网站建设费用合理。

limit用于数据的分页查询,当然也会用于数据的截取,下面是limit的用法:

1. 模仿百度、谷歌方案(前端业务控制)

类似于分段。我们给每次只能翻100页、超过一百页的需要重新加载后面的100页。这样就解决了每次加载数量数据大 速度慢的问题了

2. 记录每次取出的最大id, 然后where id 最大id

select * from table_name Where id 最大id limit 10000, 10;

这种方法适用于:除了主键ID等离散型字段外,也适用连续型字段datetime等

最大id由前端分页pageNum和pageIndex计算出来。

3. IN获取id

4. join方式 + 覆盖索引(推荐)

如果对于有where 条件,又想走索引用limit的,必须设计一个索引,将where 放第一位,limit用到的主键放第2位,而且只能select 主键!

1. jdbcpagingReader使用方式

2. db索引分区器使用方式

入参1: 表名 如test_table

入参2: 排序索引字段 可以是主键,也可以是其他索引。需要保证是唯一索引即可。如:id

入参3: 主键可手动传入,也可以根据表名计算出来:现在只支持单列主键的。 如:id

入参4: 具体表 要分多少块。如:4

MySQL大数据量分页查询方法及其优化

使用子查询优化大数据量分页查询

这种方式的做法是先定位偏移位置的id,然后再往后查询,适用于id递增的情况。

使用id限定优化大数据量分页查询

使用这种方式需要先假设数据表的id是连续递增的,我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:

当然了,也可以使用in的方式来进行查询,这种方式经常用在多表关联的情况下,使用其他表查询的id集合来进行查询:

但是使用这种in查询方式的时候要注意的是,某些MySQL版本并不支持在in子句中使用limit子句。

参考 sql优化之大数据量分页查询(mysql) - yanggb - 博客园 (cnblogs.com)

MySQL分页的sql语言怎么写?

1、首先我们建立一个表表的数据,这个表里有25条数据,id从1到25。(下图是部分截图)

2、要分页数据,首先我们假设一页有10条数据,我们可以用mysql的limit关键字来限定返回多少条数据。并且用orderby来排序数据,这里用id来排序。所以第一页的sql可以如图这样写。

3、执行后得到的数据如图,就是id从1到10的前10条数据,因为我们是按id升序来排序的。

4、上面第一页的sql是简化的写法,完整的写法如图,得到的结果和上图的一模一样。代码里limit0,10的意思是从第一条数据开始,取10条数据。(注意的是第一条数据是从0开始的)

5、那么第二页的数据,关键是要知道是从哪一条数据开始,可以用这个公式得到:(页码-1) *每页显示多少条,即(2-1)*10=10,所以sql语句如图,limit10,10。

6、执行后,结果正确,得到id从11到20的10条数据。

7、同理第三页数据的sql如图,br/就是limit20,10。

8、查询的结果如图,因为这页只剩下5条数据了,所以只显示5条数据。如果你有更多页的数据,后面的数据只需要按上面的公式,得到从哪行开始,就可以写对应的sql语句了。

mysql如何做分页查询?

直接用limit start, count分页语句, 也是我程序中用的方法:

select * from product limit start, count

当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下:

select * from product limit 10, 20 0.016秒

select * from product limit 100, 20 0.016秒

select * from product limit 1000, 20 0.047秒

select * from product limit 10000, 20 0.094秒

我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右) select * from product limit 400000, 20 3.229秒

再看我们取最后一页记录的时间

select * from product limit 866613, 20 37.44秒

难怪搜索引擎抓取我们页面的时候经常会报超时,像这种分页最大的页码页显然这种时

间是无法忍受的。

从中我们也能总结出两件事情:

1)limit语句的查询时间与起始记录的位置成正比

2)mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。

mysql数据库分页

很多应用往往只展示最新或最热门的几条记录,但为了旧记录仍然可访问,所以就需要个分页的导航栏。然而,如何通过MySQL更好的实现分页,始终是比较令人头疼的问题。虽然没有拿来就能用的解决办法,但了解数据库的底层或多或少有助于优化分页查询。

我们先从一个常用但性能很差的查询来看一看。

SELECT *

FROM city

ORDER BY id DESC

LIMIT 0, 15

这个查询耗时0.00sec。So,这个查询有什么问题呢?实际上,这个查询语句和参数都没有问题,因为它用到了下面表的主键,而且只读取15条记录。

CREATE TABLE city (

id int(10) unsigned NOT NULL AUTO_INCREMENT,

city varchar(128) NOT NULL,

PRIMARY KEY (id)

) ENGINE=InnoDB;

真正的问题在于offset(分页偏移量)很大的时候,像下面这样:

SELECT *

FROM city

ORDER BY id DESC

LIMIT 100000, 15;

上面的查询在有2M行记录时需要0.22sec,通过EXPLAIN查看SQL的执行计划可以发现该SQL检索了100015行,但最后只需要15行。大的分页偏移量会增加使用的数据,MySQL会将大量最终不会使用的数据加载到内存中。就算我们假设大部分网站的用户只访问前几页数据,但少量的大的分页偏移量的请求也会对整个系统造成危害。Facebook意识到了这一点,但Facebook并没有为了每秒可以处理更多的请求而去优化数据库,而是将重心放在将请求响应时间的方差变小。

对于分页请求,还有一个信息也很重要,就是总共的记录数。我们可以通过下面的查询很容易的获取总的记录数。

SELECT COUNT(*)

FROM city;

然而,上面的SQL在采用InnoDB为存储引擎时需要耗费9.28sec。一个不正确的优化是采用 SQL_CALC_FOUND_ROWS,SQL_CALC_FOUND_ROWS 可以在能够在分页查询时事先准备好符合条件的记录数,随后只要执行一句 select FOUND_ROWS(); 就能获得总记录数。但是在大多数情况下,查询语句简短并不意味着性能的提高。不幸的是,这种分页查询方式在许多主流框架中都有用到,下面看看这个语句的查询性能。

SELECT SQL_CALC_FOUND_ROWS *

FROM city

ORDER BY id DESC

LIMIT 100000, 15;

这个语句耗时20.02sec,是上一个的两倍。事实证明使用 SQL_CALC_FOUND_ROWS 做分页是很糟糕的想法。

下面来看看到底如何优化。文章分为两部分,第一部分是如何获取记录的总数目,第二部分是获取真正的记录。

高效的计算行数

如果采用的引擎是MyISAM,可以直接执行COUNT(*)去获取行数即可。相似的,在堆表中也会将行数存储到表的元信息中。但如果引擎是InnoDB情况就会复杂一些,因为InnoDB不保存表的具体行数。

我们可以将行数缓存起来,然后可以通过一个守护进程定期更新或者用户的某些操作导致缓存失效时,执行下面的语句:

SELECT COUNT(*)

FROM city

USE INDEX(PRIMARY);

获取记录

下面进入这篇文章最重要的部分,获取分页要展示的记录。上面已经说过了,大的偏移量会影响性能,所以我们要重写查询语句。为了演示,我们创建一个新的表“news”,按照时事性排序(最新发布的在最前面),实现一个高性能的分页。为了简单,我们就假设最新发布的新闻的Id也是最大的。

CREATE TABLE news(

id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT,

title VARCHAR(128) NOT NULL

) ENGINE=InnoDB;

一个比较高效的方式是基于用户展示的最后一个新闻Id。查询下一页的语句如下,需要传入当前页面展示的最后一个Id。

SELECT *

FROM news WHERE id $last_id

ORDER BY id DESC

LIMIT $perpage

查询上一页的语句类似,只不过需要传入当前页的第一个Id,并且要逆序。

SELECT *

FROM news WHERE id $last_id

ORDER BY id ASC

LIMIT $perpage

上面的查询方式适合实现简易的分页,即不显示具体的页数导航,只显示“上一页”和“下一页”,例如博客中页脚显示“上一页”,“下一页”的按钮。但如果要实现真正的页面导航还是很难的,下面看看另一种方式。

SELECT id

FROM (

SELECT id, ((@cnt:= @cnt + 1) + $perpage - 1) % $perpage cnt

FROM news

JOIN (SELECT @cnt:= 0)T

WHERE id $last_id

ORDER BY id DESC

LIMIT $perpage * $buttons

)C

WHERE cnt = 0;

通过上面的语句可以为每一个分页的按钮计算出一个offset对应的id。这种方法还有一个好处。假设,网站上正在发布一片新的文章,那么所有文章的位置都会往后移一位,所以如果用户在发布文章时换页,那么他会看见一篇文章两次。如果固定了每个按钮的offset Id,这个问题就迎刃而解了。Mark Callaghan发表过一篇类似的博客,利用了组合索引和两个位置变量,但是基本思想是一致的。

如果表中的记录很少被删除、修改,还可以将记录对应的页码存储到表中,并在该列上创建合适的索引。采用这种方式,当新增一个记录的时候,需要执行下面的查询重新生成对应的页号。

SET p:= 0;

UPDATE news SET page=CEIL((p:= p + 1) / $perpage) ORDER BY id DESC;

当然,也可以新增一个专用于分页的表,可以用个后台程序来维护。

UPDATE pagination T

JOIN (

SELECT id, CEIL((p:= p + 1) / $perpage) page

FROM news

ORDER BY id

)C

ON C.id = T.id

SET T.page = C.page;

现在想获取任意一页的元素就很简单了:

SELECT *

FROM news A

JOIN pagination B ON A.id=B.ID

WHERE page=$offset;

还有另外一种与上种方法比较相似的方法来做分页,这种方式比较试用于数据集相对小,并且没有可用的索引的情况下—比如处理搜索结果时。在一个普通的服务器上执行下面的查询,当有2M条记录时,要耗费2sec左右。这种方式比较简单,创建一个用来存储所有Id的临时表即可(这也是最耗费性能的地方)。

CREATE TEMPORARY TABLE _tmp (KEY SORT(random))

SELECT id, FLOOR(RAND() * 0x8000000) random

FROM city;

ALTER TABLE _tmp ADD OFFSET INT UNSIGNED PRIMARY KEY AUTO_INCREMENT, DROP INDEX SORT,ORDER BY random;

接下来就可以向下面一样执行分页查询了。

SELECT *

FROM _tmp

WHERE OFFSET = $offset

ORDER BY OFFSET

LIMIT $perpage;

简单来说,对于分页的优化就是。。。避免数据量大时扫描过多的记录。

MySQL百万级数据量分页查询方法及其优化建议

offset+limit方式的分页查询,当数据表超过100w条记录,性能会很差。

主要原因是offset limit的分页方式是从头开始查询,然后舍弃前offset个记录,所以offset偏移量越大,查询速度越慢。

比如: 读第10000到10019行元素(pk是主键/唯一键).

使用order by id可以在查询时使用主键索引。

但是这种方式在id为uuid的时候就会出现问题。可以使用where in的方式解决:

带条件的查询:

如果在分页查询中添加了where条件例如 type = 'a’这样的条件,sql变成 :

这种情况因为type没有使用索引也会导致查询速度变慢。但是只添加type为索引查询速度还是很慢,是因为查询的数据量太多了。这个时候考虑添加组合索引,组合索引的顺序要where条件字段在前,id在后,如 (type,id),因为组合索引查询时用到了type索引,而type跟id是组合索引的关系,如果只select id ,那么直接就可以按组合索引返回id,而不需要再进行一次查询去返回id

使用uuid作为主键不仅会带来性能上的问题,在查询时也会遇到问题。

因为在使用select id from table limit 10000,10 查询id数据时,默认是对id进行排序,返回的是排序后的id结果,如果我们想按插入顺序查询结果,这样查询出来的结果就与我们的需求不相符。

聚集索引跟非聚集索引:聚集索引类似与新华字典的拼音,根据拼音搜索到的信息都是连续的,可以很快获取到它前后的信息。非聚集索引类似于部首查询,信息存放的位置可能不在一个区域。对经常使用范围查询的字段考虑使用聚集索引。

InnoDB中索引分为聚簇索引(主键索引)和非聚簇索引(非主键索引),聚簇索引的叶子节点中保存的是整行记录,而非聚簇索引的叶子节点中保存的是该行记录的主键的值。

如果您的表上定义有主键,该主键索引是聚集索引。

如果你不定义为您的表的主键时,MySQL取第一个唯一索引(unique)而且只含非空列(NOT NULL)作为主键,InnoDB使用它作为聚集索引。

如果没有这样的列,InnoDB就自己产生一个这样的ID值,

优先选index key_len小的索引进行count(*),尽量不使用聚簇索引

在没有where条件的情况下,count(*)和count(常量),如果有非聚簇索引,mysql会自动选择非聚簇索引,因为非聚簇索引所占的空间小,如果没有非聚簇索引会使用聚集索引。count(primary key)主键id为聚集索引,使用聚集索引。有where条件的情况下,是否使用索引会根据where条件判断。


网站标题:mysql的分页怎么用 mysql分页怎么写
网址分享:http://cdkjz.cn/article/hjdhpc.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220