索引 KEY_TSKTASK_MONTIME (STATUS_ID MON_TIME)
创新互联是一家专业提供平定企业网站建设,专注与成都网站制作、做网站、H5建站、小程序制作等业务。10年已为平定众多企业、政府机构等服务。创新互联专业网站制作公司优惠进行中。
分析 涉及的两条语句应该不会涉及相同的TSK_TASK记录 那为什么会造成死锁呢?
查询MySQL官网文档 发现这跟MySQL的索引机制有关 MySQL的InnoDB引擎是行级锁 我原来的理解是直接对记录进行锁定 实际上并不是这样的
要点如下:
不是对记录进行锁定 而是对索引进行锁定
在UPDATE DELETE操作时 MySQL不仅锁定WHERE条件扫描过的所有索引记录 而且会锁定相邻的键值 即所谓的next key locking
如语句UPDATE TSK_TASK SET UPDATE_TIME = NOW() WHERE ID 会锁定所有主键大于等于 的所有记录 在该语句完成之前 你就不能对主键等于 的记录进行操作
当非簇索引(non cluster index)记录被锁定时 相关的簇索引(cluster index)记录也需要被锁定才能完成相应的操作
再分析一下发生问题的两条SQL语句 就不难找到问题所在了
当 update TSK_TASK set STATUS_ID= UPDATE_TIME=now () where STATUS_ID= and MON_TIME
假设 update TSK_TASK set STATUS_ID= UPDATE_TIME=now () where ID in ( ) 几乎同时执行时 本语句首先锁定簇索引(主键) 由于需要更新STATUS_ID的值 所以还需要锁定KEY_TSKTASK_MONTIME 的某些索引记录
这样第一条语句锁定了KEY_TSKTASK_MONTIME 的记录 等待主键索引 而第二条语句则锁定了主键索引记录 而等待KEY_TSKTASK_MONTIME 的记录 在此情况下 死锁就产生了
笔者通过拆分第一条语句解决死锁问题
先查出符合条件的ID select ID from TSK_TASK where STATUS_ID= and MON_TIME date_sub(now() INTERVAL minute) 然后再更新状态 update TSK_TASK set STATUS_ID= where ID in (… )
至此 死锁问题彻底解决
lishixinzhi/Article/program/MySQL/201311/29601
一、活锁
如果事务T1封锁了数据R,事务T2又请求封锁R,于是T2等待。T3也请求封锁R,当T1释放了R上的封锁之后系统首先批准了T3的请求,T2仍然等待。然后T4又请求封锁R,当T3释放了R上的封锁之后系统又批准了T4的请求,...,T2有可能永远等待,这就是活锁的情形,如图8.4(a)所示。
避免活锁的简单方法是采用先来先服务的策略。
二、死锁
如果事务T1封锁了数据R1,T2封锁了数据R2,然后T1又请求封锁R2,因T2已封锁了R2,于是T1等待T2释放R2上的锁。接着T2又申请封锁R1,因T1已封锁了R1,T2也只能等待T1释放R1上的锁。这样就出现了T1在等待T2,而T2又在等待T1的局面,T1和T2两个事务永远不能结束,形成死锁。
1. 死锁的预防
在数据库中,产生死锁的原因是两个或多个事务都已封锁了一些数据对象,然后又都请求对已为其他事务封锁的数据对象加锁,从而出现死等待。防止死锁的发生其实就是要破坏产生死锁的条件。预防死锁通常有两种方法:
① 一次封锁法
一次封锁法要求每个事务必须一次将所有要使用的数据全部加锁,否则就不能继续执行。
一次封锁法虽然可以有效地防止死锁的发生,但也存在问题,一次就将以后要用到的全部数据加锁,势必扩大了封锁的范围,从而降低了系统的并发度。
② 顺序封锁法
顺序封锁法是预先对数据对象规定一个封锁顺序,所有事务都按这个顺序实行封锁。
顺序封锁法可以有效地防止死锁,但也同样存在问题。事务的封锁请求可以随着事务的执行而动态地决定,很难事先确定每一个事务要封锁哪些对象,因此也就很难按规定的顺序去施加封锁。
可见,在操作系统中广为采用的预防死锁的策略并不很适合数据库的特点,因此DBMS在解决死锁的问题上普遍采用的是诊断并解除死锁的方法。
2. 死锁的诊断与解除
① 超时法
如果一个事务的等待时间超过了规定的时限,就认为发生了死锁。超时法实现简单,但其不足也很明显。一是有可能误判死锁,事务因为其他原因使等待时间超过时限,系统会误认为发生了死锁。二是时限若设置得太长,死锁发生后不能及时发现。
② 等待图法
事务等待图是一个有向图G=(T,U)。 T为结点的集合,每个结点表示正运行的事务;U为边的集合,每条边表示事务等待的情况。若T1等待T2,则T1、T2之间划一条有向边,从T1指向T2。事务等待图动态地反映了所有事务的等待情况。并发控制子系统周期性地(比如每隔1分钟)检测事务等待图,如果发现图中存在回路,则表示系统中出现了死锁。
DBMS的并发控制子系统一旦检测到系统中存在死锁,就要设法解除。通常采用的方法是选择一个处理死锁代价最小的事务,将其撤消,释放此事务持有的所有的锁,使其它事务得以继续运行下去。当然,对撤消的事务所执行的数据修改操作必须加以恢复。
锁是计算机协调多个进程或线程并发访问某一资源的机制,在数据库中,除传统的计算资源(CPU、RAM、I/O)争用外,数据也是一种供许多用户共享的资源,如何保证数据并发访问的一致性,有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素,从这个角度来说,锁对数据库而言是尤其重要,也更加复杂。MySQL中的锁,按照锁的粒度分为:1、全局锁,就锁定数据库中的所有表。2、表级锁,每次操作锁住整张表。3、行级锁,每次操作锁住对应的行数据。
全局锁就是对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将阻塞。其典型的使用场景就是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。但是对数据库加全局锁是有弊端的,如在主库上备份,那么在备份期间都不能执行更新,业务会受影响,第二如果是在从库上备份,那么在备份期间从库不能执行主库同步过来的二进制日志,会导致主从延迟。
解决办法是在innodb引擎中,备份时加上--single-transaction参数来完成不加锁的一致性数据备份。
添加全局锁: flush tables with read lock; 解锁 unlock tables。
表级锁,每次操作会锁住整张表.锁定粒度大,发送锁冲突的概率最高,并发读最低,应用在myisam、innodb、BOB等存储引擎中。表级锁分为: 表锁、元数据锁(meta data lock, MDL)和意向锁。
表锁又分为: 表共享读锁 read lock、表独占写锁write lock
语法: 1、加锁 lock tables 表名 ... read/write
2、释放锁 unlock tables 或者关闭客户端连接
注意: 读锁不会阻塞其它客户端的读,但是会阻塞其它客户端的写,写锁既会阻塞其它客户端的读,又会阻塞其它客户端的写。大家可以拿一张表来测试看看。
元数据锁,在加锁过程中是系统自动控制的,无需显示使用,在访问一张表的时候会自动加上,MDL锁主要作用是维护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML和DDL冲突,保证读写的正确性。
在MySQL5.5中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进行变更操作时,加MDL写锁(排他).
查看元数据锁:
select object_type,object_schema,object_name,lock_type,lock_duration from performance_schema_metadata_locks;
意向锁,为了避免DML在执行时,加的行锁与表锁的冲突,在innodb中引入了意向锁,使得表锁不用检查每行数据是否加锁,使用意向锁来减少表锁的检查。意向锁分为,意向共享锁is由语句select ... lock in share mode添加。意向排他锁ix,由insert,update,delete,select。。。for update 添加。
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from performance_schema.data_lock;
行级锁,每次操作锁住对应的行数据,锁定粒度最小,发生锁冲突的概率最高,并发读最高,应用在innodb存储引擎中。
innodb的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁,对于行级锁,主要分为以下三类:
1、行锁或者叫record lock记录锁,锁定单个行记录的锁,防止其他事物对次行进行update和delete操作,在RC,RR隔离级别下都支持。
2、间隙锁Gap lock,锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事物在这个间隙进行insert操作,产生幻读,在RR隔离级别下都支持。
3、临键锁Next-key-lock,行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap,在RR隔离级别下支持。
innodb实现了以下两种类型的行锁
1、共享锁 S: 允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
2、排他锁 X: 允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他锁。
insert 语句 排他锁 自动添加的
update语句 排他锁 自动添加
delete 语句 排他锁 自动添加
select 正常查询语句 不加锁 。。。
select 。。。lock in share mode 共享锁 需要手动在select 之后加lock in share mode
select 。。。for update 排他锁 需要手动在select之后添加for update
默认情况下,innodb在repeatable read事务隔离级别运行,innodb使用next-key锁进行搜索和索引扫描,以防止幻读。
间隙锁唯一目的是防止其它事务插入间隙,间隙锁可以共存,一个事务采用的间隙锁不会阻止另一个事务在同一间隙上采用的间隙锁。
锁表一般是长时间占用表导致的,
试着使SELECT语句运行得更快;你可能必须创建一些摘要(summary)表做到这点。
用--low-priority-updates启动mysqld。这将给所有更新(修改)一个表的语句以比SELECT语句低的优先级。在这种情况下,在先前情形的最后的SELECT语句将在INSERT语句前执行。
你可以用LOW_PRIORITY属性给与一个特定的INSERT、UPDATE或DELETE语句较低优先级。
为max_write_lock_count指定一个低值来启动mysqld使得在一定数量的WRITE锁定后给出READ锁定。
通过使用SQL命令:SET SQL_LOW_PRIORITY_UPDATES=1,你可从一个特定线程指定所有的更改应该由用低优先级完成