资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python绘制高斯函数的简单介绍

python怎样做高斯拟合

需要载入numpy和scipy库,若需要做可视化还需要matplotlib(附加dateutil, pytz, pyparsing, cycler, setuptools库)。不画图就只要前两个。

创新互联建站是一家专注于成都网站建设、成都网站设计与策划设计,山南网站建设哪家好?创新互联建站做网站,专注于网站建设10多年,网设计领域的专业建站公司;建站业务涵盖:山南等地区。山南做网站价格咨询:18980820575

如果没有这些库的话去 下载对应版本,之后解压到 C:\Python27\Lib\site-packages。

import numpy as np  

import pylab as plt  

#import matplotlib.pyplot as plt  

from scipy.optimize import curve_fit  

from scipy import asarray as ar,exp  

x = ar(range(10))  

y = ar([0,1,2,3,4,5,4,3,2,1])  

def gaussian(x,*param):  

return param[0]*np.exp(-np.power(x - param[2], 2.) / (2 * np.power(param[4], 2.)))+param[1]*np.exp(-np.power(x - param[3], 2.) / (2 * np.power(param[5], 2.)))  

popt,pcov = curve_fit(gaussian,x,y,p0=[3,4,3,6,1,1])  

print popt  

print pcov  

plt.plot(x,y,'b+:',label='data')  

plt.plot(x,gaussian(x,*popt),'ro:',label='fit')  

plt.legend()  

plt.show()

2021-02-08 Python OpenCV GaussianBlur()函数

borderType= None)函数

此函数利用高斯滤波器平滑一张图像。该函数将源图像与指定的高斯核进行卷积。

src:输入图像

ksize:(核的宽度,核的高度),输入高斯核的尺寸,核的宽高都必须是正奇数。否则,将会从参数sigma中计算得到。

dst:输出图像,尺寸与输入图像一致。

sigmaX:高斯核在X方向上的标准差。

sigmaY:高斯核在Y方向上的标准差。默认为None,如果sigmaY=0,则它将被设置为与sigmaX相等的值。如果这两者都为0,则它们的值会从ksize中计算得到。计算公式为:

borderType:像素外推法,默认为None(参考官方文档 BorderTypes

)

在图像处理中,高斯滤波主要有两种方式:

1.窗口滑动卷积

2.傅里叶变换

在此主要利用窗口滑动卷积。其中二维高斯函数公式为:

根据上述公式,生成一个3x3的高斯核,其中最重要的参数就是标准差 ,标准差 越大,核中心的值与周围的值差距越小,曲线越平滑。标准差 越小,核中心的值与周围的值差距越大,曲线越陡峭。

从图像的角度来说,高斯核的标准差 越大,平滑效果越不明显。高斯核的标准差 越小,平滑效果越明显。

可见,标准差 越大,图像平滑程度越大

参考博客1:关于GaussianBlur函数

参考博客2:关于高斯核运算

python中plt.post是什么函数

2018-05-04 11:11:36

122点赞

qiurisiyu2016

码龄7年

关注

matplotlib

1、plt.plot(x,y)

plt.plot(x,y,format_string,**kwargs) 

x轴数据,y轴数据,format_string控制曲线的格式字串 

format_string 由颜色字符,风格字符,和标记字符

import matplotlib.pyplot as plt

plt.plot([1,2,3,6],[4,5,8,1],’g-s’) 

plt.show()

结果

**kwards: 

color 颜色 

linestyle 线条样式 

marker 标记风格 

markerfacecolor 标记颜色 

markersize 标记大小 等等 

plt.plot([5,4,3,2,1])   

plt.show()

结果

plt.plot([20,2,40,6,80])   #缺省x为[0,1,2,3,4,...]

plt.show()

结果

plt.plot()参数设置

Property Value Type

alpha 控制透明度,0为完全透明,1为不透明

animated [True False]

antialiased or aa [True False]

clip_box a matplotlib.transform.Bbox instance

clip_on [True False]

clip_path a Path instance and a Transform instance, a Patch

color or c 颜色设置

contains the hit testing function

dash_capstyle [‘butt’ ‘round’ ‘projecting’]

dash_joinstyle [‘miter’ ‘round’ ‘bevel’]

dashes sequence of on/off ink in points

data 数据(np.array xdata, np.array ydata)

figure 画板对象a matplotlib.figure.Figure instance

label 图示

linestyle or ls 线型风格[‘-’ ‘–’ ‘-.’ ‘:’ ‘steps’ …]

linewidth or lw 宽度float value in points

lod [True False]

marker 数据点的设置[‘+’ ‘,’ ‘.’ ‘1’ ‘2’ ‘3’ ‘4’]

markeredgecolor or mec any matplotlib color

markeredgewidth or mew float value in points

markerfacecolor or mfc any matplotlib color

markersize or ms float

markevery [ None integer (startind, stride) ]

picker used in interactive line selection

pickradius the line pick selection radius

solid_capstyle [‘butt’ ‘round’ ‘projecting’]

solid_joinstyle [‘miter’ ‘round’ ‘bevel’]

transform a matplotlib.transforms.Transform instance

visible [True False]

xdata np.array

ydata np.array

zorder any number

确定x,y值,将其打印出来

x=np.linspace(-1,1,5)

y=2*x+1

plt.plot(x,y)

plt.show()

2、plt.figure()用来画图,自定义画布大小

fig1 = plt.figure(num='fig111111', figsize=(10, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#0000FF')

plt.plot(x,y1)           #在变量fig1后进行plt.plot操作,图形将显示在fig1中

fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')

plt.plot(x,y2)           #在变量fig2后进行plt.plot操作,图形将显示在fig2中

plt.show()

plt.close()

结果

fig1 = plt.figure(num='fig111111', figsize=(10, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#0000FF')

plt.plot(x,y1)

plt.plot(x,y2)

fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')

plt.show()

plt.close()

结果:

3、plt.subplot(222)

将figure设置的画布大小分成几个部分,参数‘221’表示2(row)x2(colu),即将画布分成2x2,两行两列的4块区域,1表示选择图形输出的区域在第一块,图形输出区域参数必须在“行x列”范围                       ,此处必须在1和2之间选择——如果参数设置为subplot(111),则表示画布整个输出,不分割成小块区域,图形直接输出在整块画布上

plt.subplot(222) 

plt.plot(y,xx)    #在2x2画布中第二块区域输出图形

plt.show()

plt.subplot(223)  #在2x2画布中第三块区域输出图形

plt.plot(y,xx)

plt.subplot(224)  # 在在2x2画布中第四块区域输出图形

plt.plot(y,xx)

4、plt.xlim设置x轴或者y轴刻度范围

plt.xlim(0,1000)  #  设置x轴刻度范围,从0~1000         #lim为极限,范围

plt.ylim(0,20)   # 设置y轴刻度的范围,从0~20

5、plt.xticks():设置x轴刻度的表现方式

fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')

plt.plot(x,y2)

plt.xticks(np.linspace(0,1000,15,endpoint=True))  # 设置x轴刻度

plt.yticks(np.linspace(0,20,10,endpoint=True))

结果

6、ax2.set_title('xxx')设置标题,画图

#产生[1,2,3,...,9]的序列

x = np.arange(1,10)

y = x

fig = plt.figure()

ax1 = fig.add_subplot(221)

#设置标题

ax1.set_title('Scatter Plot1')

plt.xlabel('M')

plt.ylabel('N')

ax2 = fig.add_subplot(222)

ax2.set_title('Scatter Plot2clf')

#设置X轴标签

plt.xlabel('X')           #设置X/Y轴标签是在对应的figure后进行操作才对应到该figure

#设置Y轴标签

plt.ylabel('Y')

#画散点图

ax1.scatter(x,y,c = 'r',marker = 'o')          #可以看出画散点图是在对figure进行操作

ax2.scatter(x,y,c = 'b',marker = 'x')

#设置图标

plt.legend('show picture x1 ')

#显示所画的图

plt.show()

结果

7、plt.hist()绘制直方图(可以将高斯函数这些画出来)

绘图都可以调用matplotlib.pyplot库来进行,其中的hist函数可以直接绘制直方图

调用方式:

n, bins, patches = plt.hist(arr, bins=10, normed=0, facecolor='black', edgecolor='black',alpha=1,histtype='bar')

hist的参数非常多,但常用的就这六个,只有第一个是必须的,后面四个可选

arr: 需要计算直方图的一维数组

bins: 直方图的柱数,可选项,默认为10

normed: 是否将得到的直方图向量归一化。默认为0

facecolor: 直方图颜色

edgecolor: 直方图边框颜色

alpha: 透明度

histtype: 直方图类型,‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’

返回值 :

n: 直方图向量,是否归一化由参数normed设定

bins: 返回各个bin的区间范围

patches: 返回每个bin里面包含的数据,是一个list

from skimage import data

import matplotlib.pyplot as plt

img=data.camera()

plt.figure("hist")

arr=img.flatten()

n, bins, patches = plt.hist(arr, bins=256, normed=1,edgecolor='None',facecolor='red')  

plt.show()

例:

mu, sigma = 0, .1

s = np.random.normal(loc=mu, scale=sigma, size=1000)

a,b,c = plt.hist(s, bins=3)

print("a: ",a)

print("b: ",b)

print("c: ",c)

plt.show()

结果:

a:  [ 85. 720. 195.]         #每个柱子的值

b:  [-0.36109509 -0.1357318   0.08963149  0.31499478]   #每个柱的区间范围

c:  a list of 3 Patch objects       #总共多少柱子

8、ax1.scatter(x,y,c = 'r',marker = 'o') 

使用注意:确定了figure就一定要确定象限,然后用scatter,或者不确定象限,直接使用plt.scatter

x = np.arange(1,10)

y = x

fig = plt.figure()

a=plt.subplot()            #默认为一个象限

# a=fig.add_subplot(222)

a.scatter(x,y,c='r',marker='o')

plt.show()

结果

x = np.arange(1,10)

y = x

plt.scatter(x,y,c='r',marker='o')

plt.show()

结果

import numpy as np

import matplotlib.pyplot as plt

x = np.arange(1,10)

y = x

plt.figure()

plt.scatter(x,y,c='r',marker='o')

plt.show()

结果

文章知识点与官方知识档案匹配

Python入门技能树基础语法函数

211242 人正在系统学习中

打开CSDN APP,看更多技术内容

plt的一些函数的使用_班花i的博客_plt函数

plt.函数 Fwuyi的博客 6513 1plt.figure( )函数:创建画布 2plt.plot(x, y, format_string, label="图例名"):绘制点和线, 并控制样式。 其中x是x轴数据,y是y轴数据,xy一般是列表和数组。format_string 是字符串的格式包括线...

继续访问

Python的数据科学函数包(三)——matplotlib(plt)_hxxjxw的博客...

import matplotlib.pyplot as plt plt.imshow(img) plt.show() plt.imshow()有一个cmap参数,即指定颜色映射规则。默认的cmap即颜料板是十色环 哪怕是单通道图,值在0-1之间,用plt.imshow()仍然可以显示彩色图,就是因为颜色映射的关...

继续访问

对Python中plt的画图函数详解

今天小编就为大家分享一篇对Python中plt的画图函数详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

plt.plot()函数详解

plt.plot()函数详细介绍 plt.plot(x, y, format_string, **kwargs) 参数 说明 x X轴数据,列表或数组,可选 y Y轴数据,列表或数组 format_string 控制曲线的格式字符串,可选 **kwargs 第二组或更多(x,y,format_string),可画多条曲线 format_string 由颜色字符、风格字符、标记字符组成 颜色字符 'b' 蓝色 'm' 洋红色 magenta 'g' 绿色 'y.

继续访问

python图像处理基础知识(plt库函数说明)_小草莓爸爸的博客_p...

1.画图(plt库)1.1 plt.figure(num=’’,figsize=(x, y),dpi= ,facecolor=’’,edgecolor=’’)num:表示整个图标的标题 figsize:表示尺寸 facecolor:表示1.2 plt.plot(x,y,format_string,**kwargs)...

继续访问

plt的一些函数使用_neo3301的博客_plt函数

1、plt.plot(x,y) plt.plot(x,y,format_string,**kwargs) x轴数据,y轴数据,format_string控制曲线的格式字串 format_string 由颜色字符,风格字符,和标记字符 import matplotlib.pyplot as plt ...

继续访问

最新发布 python plt 绘图详解(plt.版本)

python plt绘图详解

继续访问

python图像处理基础知识(plt库函数说明)

import matplotlib.pyplot as plt的一些基础用法,包括直方图

继续访问

plt.subplot() 函数解析_Ensoleile。的博客_plt.subplot

plt.subplot()函数用于直接制定划分方式和位置进行绘图。 函数原型 subplot(nrows, ncols, index, **kwargs),一般我们只用到前三个参数,将整个绘图区域分成 nrows 行和 ncols 列,而 index 用于对子图进行编号。

继续访问

...中plt的画图函数_Ethan的博客的博客_python的plt函数

1、plt.legend plt.legend(loc=0)#显示图例的位置,自适应方式 说明: 'best' : 0, (only implemented for axes legends)(自适应方式) 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, ...

继续访问

plt.函数

1 plt.figure( ) 函数:创建画布 2 plt.plot(x, y, format_string, label="图例名"):绘制点和线, 并控制样式。 其中x是x轴数据,y是y轴数据,xy一般是列表和数组。format_string 是字符串的格式包括线条颜色、点类型、线类型三个部分。向参数label传入图例名,使用plt.legend( )创建图例。 2.1 画一条含x、y的线条 import matplotlib.pyplot as plt x = [1, 2, 3, 4] y

继续访问

Python深度学习入门之plt画图工具基础使用(注释详细,超级简单)

Python自带的plt是深度学习最常用的库之一,在发表文章时必然得有图作为支撑,plt为深度学习必备技能之一。作为深度学习入门,只需要掌握一些基础画图操作即可,其他等要用到的时候看看函数API就行。 1 导入plt库(名字长,有点难记) import matplotlib.pyplot as plt 先随便画一个图,保存一下试试水: plt.figure(figsize=(12,8), dpi=80) plt.plot([1,2,6,4],[4,5,6,9]) plt.savefig('./plt_pn

继续访问

python画图plt函数学习_dlut_yan的博客_python plt

figure()函数可以帮助我们同时处理生成多个图,而subplot()函数则用来实现,在一个大图中,出现多个小的子图。 处理哪个figure,则选择哪个figure,再进行画图。 参考博客 importmatplotlib.pyplotaspltimportnumpyasnp x=np.arange(-1,1,0.1...

继续访问

plt.plot()函数_安之若醇的博客_plt.plot()函数

plt.plot()函数是matplotlib.pyplot用于画图的函数传一个值列表:import numpy as npimport matplotlib.pyplot as pltt=[1,2,3,4,5]y=[3,4,5,6,7]plt.plot(t, y)当x省略的时候,默认[0,1…,N-1]递增可以传元组也可以传...

继续访问

python画图plt函数学习

python中的绘图工具 :matplotli,专门用于画图。 一. 安装与导入 工具包安装:conda install matplotli 导入:import matplotlib.pyplot as plt 画图主要有:列表绘图;多图绘图;数组绘图 二. 列表绘图 1. 基础绘图:plt.plot;plt.show import matplotlib.pyplot as plt x = [1, 2, 3, 4] y = [1, 4, 9, 16] plt.plot(x, y) plt.show()

继续访问

python中plt的含义_对Python中plt的画图函数详解

1、plt.legendplt.legend(loc=0)#显示图例的位置,自适应方式说明:'best' : 0, (only implemented for axes legends)(自适应方式)'upper right' : 1,'upper left' : 2,'lower left' : 3,'lower right' : 4,'right' : 5,'cent...

继续访问

Python中plt绘图包的基本使用方法

其中,前两个输入参数表示x轴和y轴的坐标,plot函数将提供的坐标点连接,即成为要绘制的各式线型。常用的参数中,figsize需要一个元组值,表示空白画布的横纵坐标比;plt.xticks()和plt.yticks()函数用于设置坐标轴的步长和刻度。plt.xlabel()、plt.ylabel()和plt.title()函数分别用于设置x坐标轴、y坐标轴和图标的标题信息。的数据处理时,发现了自己对plt的了解和使用的缺失,因此进行一定的基础用法的学习,方便之后自己的使用,而不需要频繁的查阅资料。...

继续访问

python-plt.xticks与plt.yticks

栗子: plt.figure(figsize=(10, 10)) for i in range(25): plt.subplot(5, 5, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() 设置x或y轴对应显

继续访问

plt绘图总结

matplotlib绘图

继续访问

Python的数据科学函数包(三)——matplotlib(plt)

继续访问

热门推荐 python plt 画图

使用csv数据文件在百度网盘 import pandas as pd unrate = pd.read_csv('unrate.csv') # pd.to_datetime() 转换成日期格式,即由 1948/1/1 转换为 1948-01-01 unrate['DATE'] = pd.to_datetime(unrate['DATE']) print(unrate.head(12)) ...

继续访问

python数据可视化实现步骤,Python数据可视化图实现过程详解

Python数据可视化图实现过程详解更多python视频教程请到菜鸟教程画分布图代码示例:# encoding=utf-8import matplotlib.pyplot as pltfrom pylab import * # 支持中文mpl.rcParams[‘font.sans-serif’] = [‘SimHei’]‘mention...

继续访问

matplotlib-plt.plot用法

文章目录 英语好的直接参考这个网站 matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs) 将x,y绘制为线条或标记 参数: x, y:数据点的水平/垂直坐标。x值是可选的,默认为range(len(y))。通常,这些参数是 一维数组。它们也可以是标量,也可以是二维的(在这种情况下,列代表单独的数据集)。 这些参数不能作为关键字传递。 fmt:格式字符串,格式字符串只是用于快速设置基本行属性的缩

继续访问

python Plt学习

plt的简单学习

继续访问

plt.show()和plt.imshow()的区别

问题:plt.imshow()无法显示图像 解决方法:添加:plt.show(),即 plt.imshow(image) #image表示待处理的图像 plt.show() 原理:plt.imshow()函数负责对图像进行处理,并显示其格式,而plt.show()则是将plt.imshow()处理后的函数显示出来。 ...

继续访问

python题库刷题网站_python在线刷题网站

{"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域。","link1":...

继续访问

python xticks_Python Matplotlib.pyplot.yticks()用法及代码示例

Matplotlib是Python中的一个库,它是数字的-NumPy库的数学扩展。 Pyplot是Matplotlib模块的基于状态的接口,该模块提供了MATLAB-like接口。Matplotlib.pyplot.yticks()函数matplotlib库的pyplot模块中的annotate()函数用于获取和设置y轴的当前刻度位置和标签。用法: matplotlib.pyplot.yticks...

继续访问

python的plt函数_plt.plot画图函数

[‘font.sans-serif’]=[‘SimHei’]plt.rcParams[‘axes.unicode_minus’] = False#设置横纵坐标的名称以及对应字体格式font1 = {‘weight’ : ‘normal’,‘size’ : 15,...

继续访问

plt函数

写评论

7

794

122

怎么用python表示出二维高斯分布函数,mu表示均值,sigma表示协方差矩阵,x表示数据点

clear 

close all

%%%%%%%%%%%%%%%%%%%%%%%%%生成实验数据集

rand('state',0)

sigma_matrix1=eye(2);

sigma_matrix2=50*eye(2);

u1=[0,0];

u2=[30,30];

m1=100;

m2=300;%样本数

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1数据集

Y1=multivrandn(u1,m1,sigma_matrix1);

Y2=multivrandn(u2,m2,sigma_matrix2);

scatter(Y1(:,1),Y1(:,2),'bo')

hold on

scatter(Y2(:,1),Y2(:,2),'r*')

title('SM1数据集')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2数据集

u11=[0,0];

u22=[5,5];

u33=[10,10];

u44=[15,15];

m=600;

sigma_matrix3=2*eye(2);

Y11=multivrandn(u11,m,sigma_matrix3);

Y22=multivrandn(u22,m,sigma_matrix3);

Y33=multivrandn(u33,m,sigma_matrix3);

Y44=multivrandn(u44,m,sigma_matrix3);

figure(2)

scatter(Y11(:,1),Y11(:,2),'bo')

hold on

scatter(Y22(:,1),Y22(:,2),'r*')

scatter(Y33(:,1),Y33(:,2),'go')

scatter(Y44(:,1),Y44(:,2),'c*')

title('SM2数据集')

end

function Y = multivrandn(u,m,sigma_matrix)

%%生成指定均值和协方差矩阵的高斯数据

n=length(u);

c = chol(sigma_matrix);

X=randn(m,n);

Y=X*c+ones(m,1)*u;

end

如何用python实现图像的一维高斯滤波器

如何用python实现图像的一维高斯滤波器

现在把卷积模板中的值换一下,不是全1了,换成一组符合高斯分布的数值放在模板里面,比如这时中间的数值最大,往两边走越来越小,构造一个小的高斯包。实现的函数为cv2.GaussianBlur()。对于高斯模板,我们需要制定的是高斯核的高和宽(奇数),沿x与y方向的标准差(如果只给x,y=x,如果都给0,那么函数会自己计算)。高斯核可以有效的出去图像的高斯噪声。当然也可以自己构造高斯核,相关函数:cv2.GaussianKernel().

import cv2

import numpy as np

import matplotlib.pyplot as plt

img = cv2.imread(‘flower.jpg‘,0) #直接读为灰度图像

for i in range(2000): #添加点噪声

temp_x = np.random.randint(0,img.shape[0])

temp_y = np.random.randint(0,img.shape[1])

img[temp_x][temp_y] = 255

blur = cv2.GaussianBlur(img,(5,5),0)

plt.subplot(1,2,1),plt.imshow(img,‘gray‘)#默认彩色,另一种彩色bgr

plt.subplot(1,2,2),plt.imshow(blur,‘gray‘)

[译] 高斯混合模型 --- python教程

本文翻译自

上一节中探讨的k-means聚类模型简单易懂,但其简单性导致其应用中存在实际挑战。具体而言,k-means的非概率特性及简单地计算点与类蔟中心的欧式距离来判定归属,会导致其在许多真实的场景中性能较差。本节,我们将探讨高斯混合模型(GMMs),其可以看成k-means的延伸,更可以看成一个强有力的估计工具,而不仅仅是聚类。

我们将以一个标准的import开始

我们看下k-means的缺陷,思考下如何提高聚类模型。正如上一节所示,给定简单,易于分类的数据,k-means能找到合适的聚类结果。

举例而言,假设我们有些简单的数据点,k-means算法能以某种方式很快地将它们聚类,跟我们肉眼分辨的结果很接近:

从直观的角度来看,我可能期望聚类分配时,某些点比其他的更确定:举例而言,中间两个聚类之间似乎存在非常轻微的重叠,这样我们可能对这些数据点的分配没有完全的信心。不幸的是,k-means模型没有聚类分配的概率或不确定性的内在度量(尽管可能使用bootstrap 的方式来估计这种不确定性)。为此,我们必须考虑泛化这种模型。

k-means模型的一种理解思路是,它在每个类蔟的中心放置了一个圈(或者,更高维度超球面),其半径由聚类中最远的点确定。该半径充当训练集中聚类分配的一个硬截断:任何圈外的数据点不被视为该类的成员。我们可以使用以下函数可视化这个聚类模型:

观察k-means的一个重要发现,这些聚类模式必须是圆形的。k-means没有内置的方法来计算椭圆形或椭圆形的簇。因此,举例而言,假设我们将相同的数据点作变换,这种聚类分配方式最终变得混乱:

高斯混合模型(GMM)试图找到一个多维高斯概率分布的混合,以模拟任何输入数据集。在最简单的情况下,GMM可用于以与k-means相同的方式聚类。

但因为GMM包含概率模型,因此可以找到聚类分配的概率方式 - 在Scikit-Learn中,通过调用predict_proba方法实现。它将返回一个大小为[n_samples, n_clusters]的矩阵,用于衡量每个点属于给定类别的概率:

我们可以可视化这种不确定性,比如每个点的大小与预测的确定性成比例;如下图,我们可以看到正是群集之间边界处的点反映了群集分配的不确定性:

本质上说,高斯混合模型与k-means非常相似:它使用期望-最大化的方式,定性地执行以下操作:

有了这个,我们可以看看四成分的GMM为我们的初始数据提供了什么:

同样,我们可以使用GMM方法来拟合我们的拉伸数据集;允许full的协方差,该模型甚至可以适应非常椭圆形,伸展的聚类模式:

这清楚地表明GMM解决了以前遇到的k-means的两个主要实际问题。

如果看了之前拟合的细节,你将看到covariance_type选项在每个中都设置不同。该超参数控制每个类簇的形状的自由度;对于任意给定的问题,必须仔细设置。默认值为covariance_type =“diag”,这意味着可以独立设置沿每个维度的类蔟大小,并将得到的椭圆约束为与轴对齐。一个稍微简单和快速的模型是covariance_type =“spherical”,它约束了类簇的形状,使得所有维度都相等。尽管它并不完全等效,其产生的聚类将具有与k均值相似的特征。更复杂且计算量更大的模型(特别是随着维数的增长)是使用covariance_type =“full”,这允许将每个簇建模为具有任意方向的椭圆。

对于一个类蔟,下图我们可以看到这三个选项的可视化表示:

尽管GMM通常被归类为聚类算法,但从根本上说它是一种密度估算算法。也就是说,GMM适合某些数据的结果在技术上不是聚类模型,而是描述数据分布的生成概率模型。

例如,考虑一下Scikit-Learn的make_moons函数生成的一些数据:

如果我们尝试用视为聚类模型的双成分的GMM模拟数据,则结果不是特别有用:

但是如果我们使用更多成分的GMM模型,并忽视聚类的类别,我们会发现更接近输入数据的拟合:

这里,16个高斯分布的混合不是为了找到分离的数据簇,而是为了对输入数据的整体分布进行建模。这是分布的一个生成模型,这意味着GMM为我们提供了生成与我们的输入类似分布的新随机数据的方法。例如,以下是从这个16分量GMM拟合到我们原始数据的400个新点:

GMM非常方便,可以灵活地建模任意多维数据分布。

GMM是一种生成模型这一事实为我们提供了一种确定给定数据集的最佳组件数的自然方法。生成模型本质上是数据集的概率分布,因此我们可以简单地评估模型下数据的可能性,使用交叉验证来避免过度拟合。校正过度拟合的另一种方法是使用一些分析标准来调整模型可能性,例如 Akaike information criterion (AIC) 或 Bayesian information criterion (BIC) 。Scikit-Learn的GMM估计器实际上包含计算这两者的内置方法,因此在这种方法上操作非常容易。

让我们看看在moon数据集中,使用AIC和BIC函数确定GMM组件数量:

最佳的聚类数目是使得AIC或BIC最小化的值,具体取决于我们希望使用的近似值。 AIC告诉我们,我们上面选择的16个组件可能太多了:大约8-12个组件可能是更好的选择。与此类问题一样,BIC建议使用更简单的模型。

注意重点:这个组件数量的选择衡量GMM作为密度估算器的效果,而不是它作为聚类算法的效果。我鼓励您将GMM主要视为密度估算器,并且只有在简单数据集中保证时才将其用于聚类。

我们刚刚看到了一个使用GMM作为数据生成模型的简单示例,以便根据输入数据定义的分布创建新样本。在这里,我们将运行这个想法,并从我们以前使用过的标准数字语料库中生成新的手写数字。

首先,让我们使用Scikit-Learn的数据工具加载数字数据:

接下来让我们绘制前100个,以准确回忆我们正在看的内容:

我们有64个维度的近1,800位数字,我们可以在这些位置上构建GMM以产生更多。 GMM可能难以在如此高维空间中收敛,因此我们将从数据上的可逆维数减少算法开始。在这里,我们将使用一个简单的PCA,要求它保留99%的预测数据方差:

结果是41个维度,减少了近1/3,几乎没有信息丢失。根据这些预测数据,让我们使用AIC来计算我们应该使用的GMM组件的数量:

似乎大约110个components最小化了AIC;我们将使用这个模型。我们迅速将其与数据拟合并确保它已收敛合:

现在我们可以使用GMM作为生成模型在这个41维投影空间内绘制100个新点的样本:

最后,我们可以使用PCA对象的逆变换来构造新的数字:

大部分结果看起来像数据集中合理的数字!

考虑一下我们在这里做了什么:给定一个手写数字的样本,我们已经模拟了数据的分布,这样我们就可以从数据中生成全新的数字样本:这些是“手写数字”,不是单独的出现在原始数据集中,而是捕获混合模型建模的输入数据的一般特征。这种数字生成模型可以证明作为贝叶斯生成分类器的一个组成部分非常有用,我们将在下一节中看到。


新闻名称:python绘制高斯函数的简单介绍
网页URL:http://cdkjz.cn/article/hhgjoi.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220