Go语言标准库中提供了sort包对整型,浮点型,字符串型切片进行排序,检查一个切片是否排好序,使用二分法搜索函数在一个有序切片中搜索一个元素等功能。
目前创新互联已为近1000家的企业提供了网站建设、域名、网络空间、网站托管、服务器托管、企业网站设计、高青网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
关于sort包内的函数说明与使用,请查看
在这里简单讲几个sort包中常用的函数
在Go语言中,对字符串的排序都是按照字节排序,也就是说在对字符串排序时是区分大小写的。
二分搜索算法
Go语言中提供了一个使用二分搜索算法的sort.Search(size,fn)方法:每次只需要比较㏒₂n个元素,其中n为切片中元素的总数。
sort.Search(size,fn)函数接受两个参数:所处理的切片的长度和一个将目标元素与有序切片的元素相比较的函数,该函数是一个闭包,如果该有序切片是升序排列,那么在判断时使用 有序切片的元素 = 目标元素。该函数返回一个int值,表示与目标元素相同的切片元素的索引。
在切片中查找出某个与目标字符串相同的元素索引
map 是Go语言中基础的数据结构,在日常的使用中经常被用到。但是它底层是如何实现的呢?
总体来说golang的map是hashmap,是使用数组+链表的形式实现的,使用拉链法消除hash冲突。
golang的map由两种重要的结构,hmap和bmap(下文中都有解释),主要就是hmap中包含一个指向bmap数组的指针,key经过hash函数之后得到一个数,这个数低位用于选择bmap(当作bmap数组指针的下表),高位用于放在bmap的[8]uint8数组中,用于快速试错。然后一个bmap可以指向下一个bmap(拉链)。
Golang中map的底层实现是一个散列表,因此实现map的过程实际上就是实现散表的过程。在这个散列表中,主要出现的结构体有两个,一个叫 hmap (a header for a go map),一个叫 bmap (a bucket for a Go map,通常叫其bucket)。这两种结构的样子分别如下所示:
hmap :
图中有很多字段,但是便于理解map的架构,你只需要关心的只有一个,就是标红的字段: buckets数组 。Golang的map中用于存储的结构是bucket数组。而bucket(即bmap)的结构是怎样的呢?
bucket :
相比于hmap,bucket的结构显得简单一些,标红的字段依然是“核心”,我们使用的map中的key和value就存储在这里。“高位哈希值”数组记录的是当前bucket中key相关的“索引”,稍后会详细叙述。还有一个字段是一个指向扩容后的bucket的指针,使得bucket会形成一个链表结构。例如下图:
由此看出hmap和bucket的关系是这样的:
而bucket又是一个链表,所以,整体的结构应该是这样的:
哈希表的特点是会有一个哈希函数,对你传来的key进行哈希运算,得到唯一的值,一般情况下都是一个数值。Golang的map中也有这么一个哈希函数,也会算出唯一的值,对于这个值的使用,Golang也是很有意思。
Golang把求得的值按照用途一分为二:高位和低位。
如图所示,蓝色为高位,红色为低位。 然后低位用于寻找当前key属于hmap中的哪个bucket,而高位用于寻找bucket中的哪个key。上文中提到:bucket中有个属性字段是“高位哈希值”数组,这里存的就是蓝色的高位值,用来声明当前bucket中有哪些“key”,便于搜索查找。 需要特别指出的一点是:我们map中的key/value值都是存到同一个数组中的。数组中的顺序是这样的:
并不是key0/value0/key1/value1的形式,这样做的好处是:在key和value的长度不同的时候,可 以消除padding(内存对齐)带来的空间浪费 。
现在,我们可以得到Go语言map的整个的结构图了:(hash结果的低位用于选择把KV放在bmap数组中的哪一个bmap中,高位用于key的快速预览,用于快速试错)
map的扩容
当以上的哈希表增长的时候,Go语言会将bucket数组的数量扩充一倍,产生一个新的bucket数组,并将旧数组的数据迁移至新数组。
加载因子
判断扩充的条件,就是哈希表中的加载因子(即loadFactor)。
加载因子是一个阈值,一般表示为:散列包含的元素数 除以 位置总数。是一种“产生冲突机会”和“空间使用”的平衡与折中:加载因子越小,说明空间空置率高,空间使用率小,但是加载因子越大,说明空间利用率上去了,但是“产生冲突机会”高了。
每种哈希表的都会有一个加载因子,数值超过加载因子就会为哈希表扩容。
Golang的map的加载因子的公式是:map长度 / 2^B(这是代表bmap数组的长度,B是取的低位的位数)阈值是6.5。其中B可以理解为已扩容的次数。
当Go的map长度增长到大于加载因子所需的map长度时,Go语言就会将产生一个新的bucket数组,然后把旧的bucket数组移到一个属性字段oldbucket中。注意:并不是立刻把旧的数组中的元素转义到新的bucket当中,而是,只有当访问到具体的某个bucket的时候,会把bucket中的数据转移到新的bucket中。
如下图所示:当扩容的时候,Go的map结构体中,会保存旧的数据,和新生成的数组
上面部分代表旧的有数据的bucket,下面部分代表新生成的新的bucket。蓝色代表存有数据的bucket,橘黄色代表空的bucket。
扩容时map并不会立即把新数据做迁移,而是当访问原来旧bucket的数据的时候,才把旧数据做迁移,如下图:
注意:这里并不会直接删除旧的bucket,而是把原来的引用去掉,利用GC清除内存。
map中数据的删除
如果理解了map的整体结构,那么查找、更新、删除的基本步骤应该都很清楚了。这里不再赘述。
值得注意的是,找到了map中的数据之后,针对key和value分别做如下操作:
1
2
3
4
1、如果``key``是一个指针类型的,则直接将其置为空,等待GC清除;
2、如果是值类型的,则清除相关内存。
3、同理,对``value``做相同的操作。
4、最后把key对应的高位值对应的数组index置为空。
// 先声明map
var m1 map[string]string
// 再使用make函数创建一个非nil的map,nil map不能赋值
m1 = make(map[string]string)
// 最后给已声明的map赋值
m1["a"] = "aa"
m1["b"] = "bb"
// 直接创建
m2 := make(map[string]string)
// 然后赋值
m2["a"] = "aa"
m2["b"] = "bb"
// 初始化 + 赋值一体化
m3 := map[string]string{
"a": "aa",
"b": "bb",
}
望采纳。。
// ==========================================
// 查找键值是否存在
if v, ok := m1["a"]; ok {
fmt.Println(v)
} else {
fmt.Println("Key Not Found")
}
// 遍历map
for k, v := range m1 {
fmt.Println(k, v)
}
由于go语言是一个强类型的语言,因此hashmap也是有类型的,具体体现在key和value都必须指定类型,比如声明一个key为string,value也是string的map,
需要这样做
大部分类型都能做key,某些类型是不能的,共同的特点是: 不能使用== 来比较,包括: slice, map, function
在迭代的过程中是可以对map进行删除和更新操作的,规则如下:
golang的map是hash结构的,意味着平均访问时间是O(1)的。同传统的hashmap一样,由一个个bucket组成:
那我们怎么访问到对应的bucket呢,我们需要得到对应key的hash值
各个参数的意思:
目前采用的是这一行:
| 6.50 | 20.90 | 10.79 | 4.25 | 6.50 |
sync.Map是1.9才推荐的并发安全的map,除了互斥量以外,还运用了原子操作,所以在这之前,有必要了解下 Go语言——原子操作
go1.10\src\sync\map.go
entry分为三种情况:
从read中读取key,如果key存在就tryStore。
注意这里开始需要加锁,因为需要操作dirty。
条目在read中,首先取消标记,然后将条目保存到dirty里。(因为标记的数据不在dirty里)
最后原子保存value到条目里面,这里注意read和dirty都有条目。
总结一下Store:
这里可以看到dirty保存了数据的修改,除非可以直接原子更新read,继续保持read clean。
有了之前的经验,可以猜测下load流程:
与猜测的 区别 :
由于数据保存两份,所以删除考虑:
先看第二种情况。加锁直接删除dirty数据。思考下貌似没什么问题,本身就是脏数据。
第一种和第三种情况唯一的区别就是条目是否被标记。标记代表删除,所以直接返回。否则CAS操作置为nil。这里总感觉少点什么,因为条目其实还是存在的,虽然指针nil。
看了一圈貌似没找到标记的逻辑,因为删除只是将他变成nil。
之前以为这个逻辑就是简单的将为标记的条目拷贝给dirty,现在看来大有文章。
p == nil,说明条目已经被delete了,CAS将他置为标记删除。然后这个条目就不会保存在dirty里面。
这里其实就跟miss逻辑串起来了,因为miss达到阈值之后,dirty会全量变成read,也就是说标记删除在这一步最终删除。这个还是很巧妙的。
真正的删除逻辑:
很绕。。。。