递归具体用法其实就是让你把一个问题分解成很多个类似的情况,虽然你要解决这个问题非常难,莫名其妙,要你想几年,但是把他一直递归分解,就变成很好理解的单种情况,而你整个问题又是跟这个单种情况类似,把整个问题通过递归调用一层一层分解到最低级简单的那种情况,就是你所需要理解的了。
成都创新互联公司于2013年创立,是专业互联网技术服务公司,拥有项目成都网站建设、网站建设网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元耒阳做网站,已为上家服务,为耒阳各地企业和个人服务,联系电话:18982081108
一个函数在它的函数体内调用它自身称为递归调用。这种函数称为递归函数。C语言允许函数的递归调用。在递归调用中,主调函数又是被调函数。执行递归函数将反复调用其自身,每调用一次就进入新的一层。
(引自谭浩强的C语言书里)
用递归法计算n!可用下述公式表示:
n!=1 (n=0,1)
n×(n-1)! (n1)
具体如下long ff(int n)
{
long f;
if(n0) printf("n0,input error");
else if(n==0||n==1) f=1;
else f=ff(n-1)*n;
return(f);
}
main()
{
int n;
long y;
printf("\ninput a inteager number:\n");
scanf("%d",n);
y=ff(n);
printf("%d!=%ld",n,y);
}
较难题:一块板上有三根针,A,B,C。A针上套有64个大小不等的圆盘,大的在下,小的在上。如图5.4所示。要把这64个圆盘从A针移动C针上,每次只能移动一个圆盘,移动可以借助B针进行。但在任何时候,任何针上的圆盘都必须保持大盘在下,小盘在上。求移动的步骤。
具体如下move(int n,int x,int y,int z)
{
if(n==1)
printf("%c--%c\n",x,z);
else
{
move(n-1,x,z,y);
printf("%c--%c\n",x,z);
move(n-1,y,x,z);
}
}
main()
{
int h;
printf("\ninput number:\n");
scanf("%d",h);
printf("the step to moving %2d diskes:\n",h);
move(h,'a','b','c');
}
从程序中可以看出,move函数是一个递归函数,它有四个形参n,x,y,z。n表示圆盘数,x,y,z分别表示三根针。move 函数的功能是把x上的n个圆盘移动到z上。当n==1时,直接把x上的圆盘移至z上,输出x→z。如n!=1则分为三步:递归调用move函数,把n-1个圆盘从x移到y;输出x→z;递归调用move函数,把n-1个圆盘从y移到z。在递归调用过程中n=n-1,故n的值逐次递减,最后n=1时,终止递归,逐层返回。当n=4 时程序运行的结果为:
所谓递归,说的简单点,就是函数自己调用自己,然后在某个特定条件下。结束这种自我调用。
如果不给予这个结束条件,就成了无限死循环了。这样这个递归也就毫无意义了。
如下面问题
1 1 2 3 5 8 13 21 ........n
分析可以看出, i 表示第几个数, n 表示该数的值
当i = 1 时, n = 1;
当i = 2 时, n = 1;
当i = 3 时 n = i1 + i2;
当i = 4 时 n = i2 + i3
所以可以写个函数
int fun(int n) // 这里的n代表第几个数
{
if(1 == n || 2 == n) // 第一个数
{
return 1;
}
else
{
return fun(n - 1) + fun(n - 2); // 这里就是自己调用自己,形成循环自我调用。
}
}
注: 以上代码只是用来演示递归,不包含错误校验。
在实际生产过程中。该代码不够健壮。
如此,就完成了递归。你就可以求得第n个数了。
何时考虑使用递归。
当你分析一个问题的时候,发现这个问题,是一个自我循环时,而且这个自我循环到一个给定值,就可以终止的时候,你就快要考虑递归了。
递归:就是自己调自己,但是没终止条件会死循环,所以你的递归代码里有结束自调自的条件,这样就创造了有限次的循环(代码中你看不到for或foreach但是有循环发生)
递归函数有三点要求:
1,递归的终止点,即递归函数的出口
2,不断的递归调用自身
3,递归函数主体内容,即递归函数需要做的事情
ps:3一般可以放在2的前面或者后面,一般1放最前面。另外,2和3可以根据不同的需要合并,比如,有时候递归函数的主体就是返回调用下层函数所得到的结果。
具体例子如下:
void fun(int n)
{
if(n=0) return; //1 这是递归的终点,即出口
fun(n-1); //2、递归函数自身的调用
coutnendl; //3 递归函数的主体内容
}
2,3合并的情况
int fun(int n)
{
if(n=0) return 0;
return fun(n-1)+fun(n-2); //2 3合并
}
简单来说就是一个函数调用到了自己,就可以称为递归.下面是简单的求n!的例子:
#includestdio.h
#includestring.h
int fac(int n)
{
if(n==0)return 1;
return n*fac(n-1);
}
void main()
{
printf("%d\n",fac(6));
}
程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。
递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。
一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
扩展资料:
递归的应用
1、数据的定义是按递归定义的。(Fibonacci函数)
2、问题解法按递归算法实现。这类问题虽则本身没有明显的递归结构,但用递归求解比迭代求解更简单,如Hanoi问题。
3、数据的结构形式是按递归定义的。
递归的缺点
递归算法解题相对常用的算法如普通循环等,运行效率较低。因此,应该尽量避免使用递归,除非没有更好的算法或者某种特定情况,递归更为适合的时候。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。
参考资料来源:百度百科-递归