资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

关于go语言整数如何开平方的信息

如何求一个整数的平方根呢?

例:求256的平方根

在灵山等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供做网站、网站制作 网站设计制作定制开发,公司网站建设,企业网站建设,成都品牌网站建设,成都全网营销,成都外贸网站制作,灵山网站建设费用合理。

第一步:将被开方数的整数个位起向左每隔两位划为一段,用逗号分开,分成几段,表示所求平方根是几位数。

例,第一步:将256,分成两段:

2,56

表示平方根是两位数(XY,X表是平方根十位上数,Y表示个位数)。

第二步:根据左边第一段里的数,取该数的平方根的整数部分,作为所要求的平方根求最高位上的数。

例:左边第一段数值是2,2的平方根是大约等于1.414(这些尽量要记得,100以内的,尤其是能开整数的),由于2的平方根1.414大于1和小于2,所以取整数部分是1作为所要求的平方根求最高位上的数,即所要求的平方根最高位X是1。

第三步:从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。

例:第一段数里的数是2.第二步计算出最高数是1

2减去1的平方=1

将1与第二段数(56)组成一个第一个余数:156

第四步:把第二步求得的最高位数(1)乘以20去试除第一个余数(156),取所得结果的整数部分作为第一个试商。

例: 156除以(1乘20)=7.8

第一个试商就是7

第五步:第二步求得的的最高位数(1)乘以20再加上第一个试商(7)再乘以第一个试商(7)。

(1*20+7)*7

如果:(1*20+7)*7小于等于156,则7就是平方根的第二位数.

如果:(1*20+7)*7大于156,将第一个试商7减1,即用6再计算。

由于:(1*20+6)*6=156所以,6就是第平方根的第二位数。

例:求55225的平方根

第一步:将被开方数的整数个位起向左每隔两位划为一段,用逗号分开,分成几段,表示所求平方根是几位数。

例,第一步:将55225,分成三段:

5,52,25

表示平方根是三位数(XYZ)。

第二步:根据左边第一段里的数,取该数的平方根的整数部分,作为所要求的平方根求最高位上的数。

例:左边第一段数值是5,5的平方根是(2点几)大于2和小于3,所以取整数部分是2作为所要求的平方根求最高位上的数,即所要求的平方根最高位X是2。

第三步:从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。

例:第一段数里的数是5.第二步计算出最高数是2

5减去2的平方=1

将1与第二段数(52)组成一个第一个余数:152

第四步:把第二步求得的最高位数(2)乘以20去试除第一个余数(152),取所得结果的整数部分作为第一个试商。

例: 152除以(2乘20)=3.8

第一个试商就是3

第五步:第二步求得的的最高位数(2)乘以20再加上第一个试商(3)再乘以第一个试商(3)。

(2*20+3)*3

如果:(2*20+3)*3小于等于152,则3就是平方根的第二位数.

如果:(2*20+3)*3大于152,将第一个试商3减1,即用2再计算。

由于:(2*20+3)*3小于152所以,3就是第平方根的第二位数。

第六步:用同样的方法,继续求平方根的其他各位上的数。用上一个余数减去上法中所求的积(即152-129=23),与第三段数组成新的余数(即2325)。这时再求试商,要用前面所得到的平方根的前两位数(即23)乘以20去试除新的余数(2325),所得的最大整数为新的试商。(2325/(23×20)的整数部分为5。)

7.对新试商的检验如前法。(右例中最后的余数为0,刚好开尽,则235为所求的平方根。)

怎么开平方啊,求教

分为整数开平方和小数开平方。 1、整数开平方步骤: (1)将被开方数从右向左每隔2位用撇号分开; (2)从左边第一段求得算数平方根的第一位数字; (3)从第一段减去这个第一位数字的平方,再把被开方数的第二段写下来,作为第一个余数; (4)把所得的第一位数字乘以20,去除第一个余数,所得的商的整数部分作为试商(如果这个整数部分大于或等于10,就改用9左试商,如果第一个余数小于第一位数字乘以20的积,则得试商0); (5)把第一位数字的20倍加上试商的和,乘以这个试商,如果所得的积大于余数时,就要把试商减1再试,直到积小于或等于余数为止,这个试商就是算数平方根的第二位数字; (6)用同样方法继续求算数平方根的其他各位数字。 2、小数部分开平方法: 求小数平方根,也可以用整数开平方的一般方法来计算,但是在用撇号分段的时候有所不同,分段时要从小数点向右每隔2段用撇号分开,如果小数点后的最后一段只有一位,就填上一个0补成2位,然后用整数部分开平方的步骤计算。

如何计算整数平方根

先一起来研究一下,怎样求 ,这里1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3.于是问题的关键在于;怎样求出它的个位数a?为此,我们从a所满足的关系式来进行分析.

根据两数和的平方公式,可以得到

1156=(30+a)2=302+2×30a+a2,

所以 1156-302=2×30a+a2,

即 256=(3×20+a)a,

这就是说, a是这样一个正整数,它与 3×20的和,再乘以它本身,等于256.

为便于求得a,可用下面的竖式来进行计算:

根号上面的数3是平方根的十位数.将 256试除以20×3,得4.由于4与20×3的和64,与4的积等于256,4就是所求的个位数a.竖式中的余数是0,表示开方正好开尽.于是得到

1156=342,

上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:

1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;

2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);

3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);

4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4);

5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);

6.用同样的方法,继续求平方根的其他各位上的数.

如遇开不尽的情况,可根据所要求的精确度求出它的近似值.例如求 的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到

笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值.

我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.

如何进行开平方运算?

具体步骤如下:

第一步:将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;

第二步:根据左边第一段里的数,求得平方根的最高位上的数;

第三步:从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数;

第四步:把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商;

第五步:用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试;

第六步:用同样的方法,继续求平方根的其他各位上的数.

把一个数开平方根怎么做

手开平方,就是一种笔算出一个数的平方根,例25的平方根是5

以523.456为例加以说明

(1)以小数点为界,向左右两边分节,每两位为一节,右边数位不够时,用0补足

-------------------------

)5`23.45`60`00

(2)从左边第一节开始试根,想一个平方≤5的整数,就是第一节的根,把这个根写在第一节的上面,并把它的平方写在第一节下面,用第一节减去这个平方.很显然,第一节的根是2

2

-------------------------

) 5`23`.45`60`00

4

------------

1

(3)将第二节23移下来,与前面的余数一起试根,将第一节的根2乘以20,写在123的左边,想一个数a,使a*(40+a)≤123,并用123减去a*(40+a).可见第二节的根是2

2 2

----------------------

)5`23.45`60`00

4

--------

42) 1 23

84

--------------

39

(4)将第三节45移下来,与前面的余数一起试根,将前面的根22乘以20,写在3945的左边,想一个数b,使b*(440+b)≤3945,并用3945减去b*(440+b),可见第三节的根是8

2 2 8

------------------

) 5`23.45`60`00

4

----------------

42 ) 1 23

84

-----------

448 ) 39 45

35 84

-----------

3 61

(5)将下一节60移下来,与前面的余数一起试根,方法类似于步骤(4),可得这一节的根是7

2 2. 8 7

------------------

) 5`23.45`60`00

4

----------

42 ) 1 23

84

--------

448 ) 39 45

35 84

-----------

4567 )  3 61 60

3 19 69

-------------

41 91

(6)继续用类似于(4)的方法往下求根,

(7)整个根的小数点与被开方数的小数点对齐

所以,523.456的算术平方根约等于22.87

怎样开平方

开平方运算也即是开平方后所得的数的平方即原数,也就是说开平方是平方的逆运算。 开立方术即开方立运算.最早的文字记载见于《九章算术》“少广”章。不用平方根表和计算器,可不可以求出一个数的平方根呢?先一起来研究一下,怎样求 ,这里1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3.于是问题的关键在于;怎样求出它的个位数a?为此,我们从a所满足的关系式来进行分析.

根据两数和的平方公式,可以得到

1156=(30+a)^2=30^2+2×30a+a^2,

所以 1156-30^2=2×30a+a^2,

即 256=(30×2+a)a,

这就是说, a是这样一个正整数,它与30×2的和,再乘以它本身,等于256.

为便于求得a,可用下面的竖式来进行计算:

根号上面的数3是平方根的十位数.将 256试除以30×2,得4(如果未除尽则取整数位).由于4与30×2的和64,与4的积等于256,4就是所求的个位数a.竖式中的余数是0,表示开方正好开尽.于是得到 1156=34^2, 或√1156=34.上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根


本文名称:关于go语言整数如何开平方的信息
文章来源:http://cdkjz.cn/article/heepec.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220