资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

java笛卡尔爱心代码,笛卡尔的爱心函数叫什么名字

笛卡尔坐标系爱心公式是什么?

笛卡尔二维坐标系里的爱心公式:r=a(1-sinθ)。

专注于为中小企业提供成都网站建设、网站设计服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业达孜免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了成百上千企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

笛卡尔心形线的由来

1650年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿的破破烂烂的衣服和随身所带的几本数学书籍。生性清高的笛卡尔从不开口请求路人施舍,他只是默默地低头在纸上写写画画,潜心于他的数学世界。

一个宁静的午后,笛卡尔照例坐在街头,沐浴在阳光中研究数学问题,突然,有人来到他身旁,拍了拍他的肩膀,你在干什么呢,扭过头,笛卡尔看到一张年轻秀丽的脸庞,一双清澈的眼睛如湛蓝的湖水,楚楚动人,长长的睫毛一眨一眨的,她就是瑞典的小公主,国王最宠爱的女儿克里斯汀。

她蹲下身,拿过笛卡尔的数学书和草稿纸,和他交谈起来。言谈中,他发现这个小女孩思维敏捷,对数学有着浓厚的兴趣。

几天后,他意外地接到通知,国王聘请他做小公主的数学老师,满心疑惑的笛卡尔跟随前来通知的侍卫一起来到皇宫,在会客厅等候的时候,他听到了从远处传来银铃般的笑声。转过身,他看到了前几天在街头偶遇的女孩子,慌忙中,他赶紧低头行礼。

从此,他便当上了公主的数学老师。公主的数学在笛卡尔的悉心指导下突飞猛进,他们之间也开始变得亲密起来。笛卡尔向她介绍了他研究的新领域直角坐标系。

通过它,代数和几何可以结合起来,也就是日后笛卡尔创立的解析几何的雏形。在笛卡尔的带领下,克里斯汀走进了奇妙的坐标世界,她对曲线着了迷。每天的形影不离也使他们彼此产生了爱慕之心。在瑞典这个浪漫的国度里,一段纯粹、美好的爱情悄然萌发。

然而,没过多久,他们的恋情传到了国王的耳朵里,过往大怒,下令马上将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁在宫中。

当时,欧洲大陆正在流行黑死病。身体孱弱的笛卡尔回到法国后不久,遍染上重病。在生命进入倒计时的那段日子,他日夜思念公主,每天坚持给她写信,盼望着她的回音。然而,这些信都被国王拦截下来,公主一直没有收到他的任何消息。

在笛卡给克里斯汀寄出第十三封信后,他永远地离开了这个世界。此时,被软禁在宫中的小公主依然徘徊在皇宫的走廊里,思念着远方的情人。这最后的一封信上没有写一句话,只有一个方程式:r=a(1-sinθ)。

国王看不懂,以为这个方程里隐藏着两个人不可告人的秘密,遍把全城的数学家召集到皇宫,但是没有人能解开这个函数式。他不忍看着心爱的女儿每天闷闷不乐,便把这封信给了她。

拿到信的克里斯汀欣喜若狂,她立即明白了恋人的意图,找来纸和笔,着手把方程图形画了出来,一颗心型图案出现在眼前,克里斯汀不禁流下感动的泪水,这条曲线就是著名的“心形线”。

国王去世后,克里斯汀继承王位,登基后,她便立刻派人去法国寻找心上人的下落,收到的却是笛卡尔去世的消息,留下了一个永远的遗憾,这封享誉世界的另类情书,至今还保存在欧洲笛卡尔纪念馆里,纪念着这段唯美的爱情。

笛卡尔的爱心函数是什么?

r=a(1-sinθ)。

笛卡尔二维坐标系里的桃心公式:r=a(1-sinθ)。

主要成就

笛卡尔在科学上的贡献是多方面的。笛卡尔不仅在哲学领域里开辟了一条新的道路,同时笛卡尔又是一勇于探索的科学家,在物理学、生理学等领域都有值得称道的创见,特别是在数学上他创立了解析几何,从而打开了近代数学的大门,在科学史上具有划时代的意义。

但他的哲学思想和方法论,在其一生活动中则占有更重要的地位。他的哲学思想对后来的哲学和科学的发展,产生了极大的影响。

笛卡尔心形函数解析式为?

1、直角坐标方程

心形线的平面直角坐标系方程表达式分别为 x^2+y^2+a*x=a*sqrt(x^2+y^2) 和 x^2+y^2-a*x=a*sqrt(x^2+y^2)。

2、极坐标方程

水平方向: ρ=a(1-cosθ) 或 ρ=a(1+cosθ) (a0)

垂直方向: ρ=a(1-sinθ) 或 ρ=a(1+sinθ) (a0)

极坐标系下绘制 r = Arccos(sinθ),我们也会得的一个漂亮的心形线。数学爱好者创作的平面直角坐标系下的心形线,由两个函数表达式构成,但在利用几何画板作图时请务必将角度单位从默认的度改为弧度。

扩展资料

相关故事:

1650年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。 那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿的破破烂烂的衣服和随身所带的几本数学书籍。

一个宁静的午后,笛卡尔照例坐在街头研究数学问题。突然,有人来到他旁边,拍了拍他的肩膀,扭过头,笛卡尔看到一张年轻秀丽的睑庞,她就是瑞典的小公主,国王最宠爱的女儿克里斯汀。

她蹲下身,拿过笛卡尔的数学书和草稿纸,和他交谈起来。言谈中,他发现,这个小女孩思维敏捷,对数学有着浓厚的兴趣。

几天后,他意外地接到通知,国王聘请他做小公主的数学老师。在笛卡尔的带领下,克里斯汀走进了奇妙的坐标世界,每天的形影不离也使他们彼此产生了爱慕之心。

然而,没过多久,他们的恋情传到了国王的耳朵里。国王大怒,下令马上将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁在宫中。 

当时,欧洲大陆正在流行黑死病。身体孱弱的笛卡尔回到法国后不久,便染上重病。在生命进入倒计时的那段日子,他每天坚持给她写信,盼望着她的回音。然而,这些信都被国王拦截下来,公主一直没有收到他的任何消息。 

在笛卡尔给克里斯汀寄出第十三封信后,他永远地离开了这个世界。这最后一封信上没有写一句话,只有一个方程:r=a(1-sinθ)。

国王不忍看着心爱的女儿每天闷闷不 乐,便把这封信给了她。拿到信的克里斯汀着手把方程图形画了出来,一颗心形图案出现在眼前,克里斯汀不禁流下感动的泪水,这条曲线就是著名的“心形线”。

参考资料来源:百度百科-心形线

笛卡尔的爱心函数是什么?

r=a(1-sinθ)。

笛卡尔二维坐标系里的桃心公式:r=a(1-sinθ)。

注意:

传说,当年52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。

公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。这也就是着名的“心形线”。

用java或者c程序输出如下图的这种简单心形,谁能给我讲讲思路。加上程序示例更好

用方程的话肯定输出不会和你的图完全一致

心形线方程如图

用上面行第二个比较简单,程序如下

#include stdio.h

bool draw(float x, float y)

{

float a = x * x + y * y - 1.0;

float b = x * x * y * y * y;

return a * a * a - b = 0;

}

int main(int argc, char* argv[])

{

for (float y = 1.5; y = -1.5; y -= 0.1)

{

for (float x = -1.2; x = 1.2; x += 0.05)

{

if (draw(x, y))

{

bool left = draw(x - 0.05, y);

bool right = draw(x + 0.05, y);

bool up = draw(x, y + 0.1);

bool down = draw(x, y - 0.1);

if (left  right  up  down)

printf(" ");

else

printf("*");

}

else

printf(" ");

}

printf("\n");

}

return 0;

}

draw函数是判断(x,y)坐标是否在心形范围内

主函数循环,y取值±1.5之间,步长0.1,x取值±1.2之间,步长0.05

如果(x,y)坐标在心形范围外打印空格

如果(x,y)坐标在心形范围内,由于这个心是空心的,要继续判断是不是心形边缘,判断周围4个点坐标,如果都在范围内,表示(x,y)坐标不会是边缘,打印空格,否则是边缘,打印星号

最终结果如图

笛卡尔心形函数的表达式是什么?

心脏可以极坐标的形式表示: r =a( 1 - sin θ)。方程为ρ(θ) = a(1 + cosθ)的心脏线的面积为:S=3(πa^2)/2。

心脏线,也称心形线,是外摆线的一种,亦为蚶线的一种,是一个圆上的固定一点在它绕着与其相切且半径相同的另外一个圆周滚动时所形成的轨迹,因其形状像心形而得名。

基本性质

1,a=1时的心脏线的周长为 8,围得的面积为3π/2。

2,心脏线亦为蚶线的一种。

3,在Mandelbrot set正中间的图形便是一个心脏线。

4,心脏线的英文名称“Cardioid”是 de Castillon 在 1741年 的《Philosophical Transactions of the Royal Society》发表的;意为“像心脏的”。


当前文章:java笛卡尔爱心代码,笛卡尔的爱心函数叫什么名字
分享URL:http://cdkjz.cn/article/hdpsgh.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220