NewSQL是对一类现代关系型数据库的统称,这类数据库对于一般的OLTP读写请求提供可横向扩展的性能,同时支持事务的ACID保证。这些系统既拥有NoSQL数据库的扩展性,又保持传统数据库的事务特性。NewSQL重新将“应用程序逻辑与数据操作逻辑应该分离”的理念带回到现代数据库的世界,这也验证了历史的发展总是呈现出螺旋上升的形式。
创新互联公司专注于忻府网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供忻府营销型网站建设,忻府网站制作、忻府网页设计、忻府网站官网定制、微信平台小程序开发服务,打造忻府网络公司原创品牌,更为您提供忻府网站排名全网营销落地服务。
在21世纪00年代中,出现了许多数据仓库系统 (如 Vertica,Greeplum 和AsterData),这些以处理OLAP 请求为设计目标的系统并不在本文定义的NewSQL范围内。OLAP 数据库更关注针对海量数据的大型、复杂、只读的查询,查询时间可能持续秒级、分钟级甚至更长。
NoSQL的拥趸普遍认为阻碍传统数据库横向扩容、提高可用性的原因在于ACID保证和关系模型,因此NoSQL运动的核心就是放弃事务强一致性以及关系模型,拥抱最终一致性和其它数据模型 (如 key/value,graphs 和Documents)。
两个最著名的NoSQL数据库就是Google的BigTable和Amazon的Dynamo,由于二者都未开源,其它组织就开始推出类似的开源替代项目,包括Facebook的 Cassandra (基于BigTable和Dynamo)、PowerSet的 Hbase(基于BigTable)。有一些创业公司也加入到这场NoSQL运动中,它们不一定是受BigTable和Dynamo的启发,但都响应了NoSQL的哲学,其中最出名的就是MongoDB。
在21世纪00年代末,市面上已经有许多供用户选择的分布式数据库产品。使用NoSQL的优势在于应用开发者可以更关注应用逻辑本身,而非数据库的扩展性问题;但与此同时许多应用,如金融系统、订单处理系统,由于无法放弃事务的一致性要求被拒之门外。
一些组织,如Google,已经发现他们的许多工程师将过多的精力放在处理数据一致性上,这既暴露了数据库的抽象、又提高了代码的复杂度,这时候要么选择回到传统DBMS时代,用更高的机器配置纵向扩容,要么选择回到中间件时代,开发支持分布式事务的中间件。这两种方案成本都很高,于是NewSQL运动开始酝酿。
NewSQL数据库设计针对的读写事务有以下特点:
1、耗时短。
2、使用索引查询,涉及少量数据。
3、重复度高,通常使用相同的查询语句和不同的查询参考。
也有一些学者认为NewSQL系统是特指实现上使用Lock-free并发控制技术和share-nothing架构的数据库。所有我们认为是NewSQL的数据库系统确实都有这样的特点。
关系数据库经过几十年的发展,已经非常成熟,但同时也存在不足:
表结构是强约束的,业务变更时扩充很麻烦。
如果对大数据量的表进行统计运算,I/O会很高,因为即使只针对某列进行运算,也需要将整行数据读入内存。
全文搜索只能使用 Like 进行整表扫描,性能非常低。
针对这些不足,产生了不同的 NoSQL 解决方案,在某些场景下比关系数据库更有优势,但同时也牺牲了某些特性,所以不能片面的迷信某种方案,应将其作为 SQL 的有利补充。
NoSQL != No SQL,而是:
NoSQL = Not Only SQL
典型的 NoSQL 方案分为4类:
Redis 是典型,其 value 是具体的数据结构,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被称为数据结构服务器。
以 list 为例:
LPOP key 是移除并返回队列左边的第一个元素。
如果用关系数据库就比较麻烦了,需要操作:
Redis 的缺点主要体现在不支持完成的ACID事务,只能保证隔离性和一致性,无法保证原子性和持久性。
最大的特点是 no-schema,无需在使用前定义字段,读取一个不存在的字段也不会导致语法错误。
特点:
以电商为例,不同商品的属性差异很大,如冰箱和电脑,这种差异性在关系数据库中会有很大的麻烦,而使用文档数据库则非常方便。
文档数据库的主要缺点:
关系数据库是按行来存储的,列式数据库是按照列来存储数据。
按行存储的优势:
在某些场景下,这些优势就成为劣势了,例如,计算超重人员的数据,只需要读取体重这一列进行统计即可,但行式存储会将整行数据读取到内存中,很浪费。
而列式存储中,只需要读取体重这列的数据即可,I/O 将大大减少。
除了节省I/O,列式存储还有更高的压缩比,可以节省存储空间。普通行式数据库的压缩比在 3:1 到 5:1 左右,列式数据库在 8:1 到 30:1,因为单个列的数据相似度更高。
列式存储的随机写效率远低于行式存储,因为行式存储时同一行多个列都存储在连续空间中,而列式存储将不同列存储在不连续的空间。
一般将列式存储应用在离线大数据分析统计场景,因为这时主要针对部分列进行操作,而且数据写入后无须更新。
关系数据库通过索引进行快速查询,但在全文搜索的情景下,索引就不够了,因为:
假设有一个交友网站,信息表如下:
需要匹配性别、地点、语言列。
需要匹配性别、地点、爱好列。
实际搜索中,各种排列组合非常多,关系数据库很难支持。
全文搜索引擎是使用 倒排索引 技术,建立单词到文档的索引,例如上面的表信息建立倒排索引:
所以特别适合根据关键词来查询文档内容。
上面介绍了几种典型的NoSQL方案,及各自的适用场景和特点,您可以根据实际需求进行选择。
NoSQL数据库
NoSQL数据库这项不属于传统的数据存储和管理技术。