访问表的方式很多,基本原理是:客户端连接服务端,正常登陆(通过身份验证),即可正常访问到数据库表,可用语句,也可直接打开数据库表
成都创新互联公司专注于黄浦网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供黄浦营销型网站建设,黄浦网站制作、黄浦网页设计、黄浦网站官网定制、成都小程序开发服务,打造黄浦网络公司原创品牌,更为您提供黄浦网站排名全网营销落地服务。
而传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,例如:
1、High performance - 对数据库高并发读写的需求
web2.0网站要根据用户个性化信息来实时生成动态页面和提供动态信息,所以基本上无法使用动态页面静态化技术,因此数据库并发负载非常高,往往要达到每秒上万次读写请求。关系数据库应付上万次SQL查询还勉强顶得住,但是应付上万次SQL写数据请求,硬盘IO就已经无法承受了。其实对于普通的BBS网站,往往也存在对高并发写请求的需求。
2、Huge Storage - 对海量数据的高效率存储和访问的需求
对于大型的SNS网站,每天用户产生海量的用户动态,以国外的Friendfeed为例,一个月就达到了2.5亿条用户动态,对于关系数据库来说,在一张2.5亿条记录的表里面进行SQL查询,效率是极其低下乃至不可忍受的。再例如大型web网站的用户登录系统,例如腾讯,盛大,动辄数以亿计的帐号,关系数据库也很难应付。
3、High Scalability High Availability- 对数据库的高可扩展性和高可用性的需求
在基于web的架构当中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,你的数据库却没有办法像web server和app server那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移,为什么数据库不能通过不断的添加服务器节点来实现扩展呢?
在上面提到的“三高”需求面前,关系数据库遇到了难以克服的障碍,而对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地,例如:
1、数据库事务一致性需求
很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低,有些场合对写一致性要求也不高。因此数据库事务管理成了数据库高负载下一个沉重的负担。
2、数据库的写实时性和读实时性需求
对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的,但是对于很多web应用来说,并不要求这么高的实时性。
3、对复杂的SQL查询,特别是多表关联查询的需求
任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的复杂SQL报表查询,特别是SNS类型的网站,从需求以及产品设计角度,就避免了这种情况的产生。往往更多的只是单表的主键查询,以及单表的简单条件分页查询,SQL的功能被极大的弱化了。
因此,关系数据库在这些越来越多的应用场景下显得不那么合适了,为了解决这类问题的非关系数据库应运而生。
NoSQL 是非关系型数据存储的广义定义。它打破了长久以来关系型数据库与ACID理论大一统的局面。NoSQL 数据存储不需要固定的表结构,通常也不存在连接操作。在大数据存取上具备关系型数据库无法比拟的性能优势。该术语在 2009 年初得到了广泛认同。
当今的应用体系结构需要数据存储在横向伸缩性上能够满足需求。而 NoSQL 存储就是为了实现这个需求。Google 的BigTable与Amazon的Dynamo是非常成功的商业 NoSQL 实现。一些开源的 NoSQL 体系,如Facebook 的Cassandra, Apache 的HBase,也得到了广泛认同。
关系数据库模型已经流行了几十年了,但是一种新类型的数据库——被称为NoSQL,正在引起企业的注意。下面是关于它的优势和劣势的一个概述。二十多年以来,对数据库管理来说,关系数据库(RDBMS)模型一直是一个占统治地位的数据库模型。但是,今天,非关系数据库,“云”数据库,或“NoSQL”数据库作为关系数据库以外的一些选择,正在引起大家的广泛关注。在这篇文章里,我们将主要关注那些非关系的NoSQL数据库的十大利弊:包括五大优势和五大挑战。
NoSQL的五大优势
1,灵活的可扩展性
多年以来,数据库管理员们都是通过“纵向扩展”的方式(当数据库的负载增加的时候,购买更大型的服务器来承载增加的负载)来进行扩展的,而不是通过“横向扩展”的方式(当数据库负载增加的时候,在多台主机上分配增加的负载)来进行扩展。但是,随着交易率和可用性需求的增加,数据库也正在迁移到云端或虚拟化环境中,“横向扩展”在commodity hardware方面的经济优势变得更加明显了,对各大企业来说,这种“诱惑”是无法抗拒的。
在commodity clusters上,要对RDBMS做“横向扩展”,并不是很容易,但是各种新类型的NoSQL数据库主要是为了进行透明的扩展,来利用新节点而设计的,而且,它们通常都是为了低成本的commodity hardware而设计的。
2,大数据
在过去的十年里,正如交易率发生了翻天覆地的增长一样,需要存储的数据量也发生了急剧地膨胀。O’Reilly把这种现象称为:“数据的工业革命”。为了满足数据量增长的需要,RDBMS的容量也在日益增加,但是,对一些企业来说,随着交易率的增加,单一数据库需要管理的数据约束的数量也变得越来越让人无法忍受了。现在,大量的“大数据”可以通过NoSQL系统(例如:Hadoop)来处理,它们能够处理的数据量远远超出了最大型的RDBMS所能处理的极限。
3,“永别了”!DBA们!(再见?)
在过去的几年里,虽然一些RDBMS供应商们声称在可管理性方面做出了很多的改进,但是高端的RDBMS系统维护起来仍然十分昂贵,而且还需要训练有素的DBA们的协助。DBA们需要亲自参与高端的RDBMS系统的设计,安装和调优。
NoSQL数据库从一开始就是为了降低管理方面的要求而设计的:从理论上来说,自动修复,数据分配和简单的数据模型的确可以让管理和调优方面的要求降低很多。但是,DBA的死期将至的谣言未免有些过于夸张了。总是需要有人对关键性的数据库的性能和可用性负责的。