从品牌网站建设到网络营销策划,从策略到执行的一站式服务
利用python 如何在图片中性别人物的识别?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
创新互联建站凭借在网站建设、网站推广领域领先的技术能力和多年的行业经验,为客户提供超值的营销型网站建设服务,我们始终认为:好的营销型网站就是好的业务员。我们已成功为企业单位、个人等客户提供了做网站、网站建设服务,以良好的商业信誉,完善的服务及深厚的技术力量处于同行领先地位。使用keras实现性别识别,模型数据使用的是oarriaga/face_classification的模型
实现效果
准备工作
在开始之前先要安装keras和tensorflow
安装keras使用命令:pip3 install keras
安装tensorflow使用命令:pip3 install tensorflow
编码部分
们使用OpenCV先识别到人脸,然后在通过keras识别性别,具体代码如下
#coding=utf-8 #性别识别 import cv2 from keras.models import load_model import numpy as np import ChineseText img = cv2.imread("img/gather.png") face_classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml" ) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_classifier.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=3, minSize=(140, 140)) gender_classifier = load_model( "classifier/gender_models/simple_CNN.81-0.96.hdf5") gender_labels = {0: '女', 1: '男'} color = (255, 255, 255) for (x, y, w, h) in faces: face = img[(y - 60):(y + h + 60), (x - 30):(x + w + 30)] face = cv2.resize(face, (48, 48)) face = np.expand_dims(face, 0) face = face / 255.0 gender_label_arg = np.argmax(gender_classifier.predict(face)) gender = gender_labels[gender_label_arg] cv2.rectangle(img, (x, y), (x + h, y + w), color, 2) img = ChineseText.cv2ImgAddText(img, gender, x + h, y, color, 30) cv2.imshow("Image", img) cv2.waitKey(0) cv2.destroyAllWindows()
成都网站建设公司地址:成都市青羊区太升南路288号锦天国际A座10层 建设咨询028-86922220
成都快上网科技有限公司-四川网站建设设计公司 | 蜀ICP备19037934号 Copyright 2020,ALL Rights Reserved cdkjz.cn | 成都网站建设 | © Copyright 2020版权所有.
专家团队为您提供成都网站建设,成都网站设计,成都品牌网站设计,成都营销型网站制作等服务,成都建网站就找快上网! | 成都网站建设哪家好? | 网站建设地图