本篇内容介绍了“Go系统遇到的锁问题有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
目前累计服务客户上1000家,积累了丰富的产品开发及服务经验。以网站设计水平和技术实力,树立企业形象,为客户提供成都网站制作、成都网站设计、网站策划、网页设计、网络营销、VI设计、网站改版、漏洞修补等服务。成都创新互联公司始终以务实、诚信为根本,不断创新和提高建站品质,通过对领先技术的掌握、对创意设计的研究、对客户形象的视觉传递、对应用系统的结合,为客户提供更好的一站式互联网解决方案,携手广大客户,共同发展进步。
底层依赖 sync.Pool 的场景
有一些开源库,为了优化性能,使用了官方提供的 sync.Pool,比如我们使用的 https://github.com/valyala/fasttemplate 这个库,每当你执行下面这样的代码的时候:
template := "http://{{host}}/?q={{query}}&foo={{bar}}{{bar}}" t := fasttemplate.New(template, "{{", "}}") s := t.ExecuteString(map[string]interface{}{ "host": "google.com", "query": url.QueryEscape("hello=world"), "bar": "foobar", }) fmt.Printf("%s", s)
内部都会生成一个 fasttemplate.Template 对象,并带有一个 byteBufferPool 字段:
type Template struct { template string startTag string endTag string texts [][]byte tags []string byteBufferPool bytebufferpool.Pool ==== 就是这个字段 }
byteBufferPool 底层就是经过封装的 sync.Pool:
type Pool struct { calls [steps]uint64 calibrating uint64 defaultSize uint64 maxSize uint64 pool sync.Pool }
这种设计会带来一个问题,如果使用方每次请求都 New 一个 Template 对象。并进行求值,比如我们最初的用法,在每次拿到了用户的请求之后,都会用参数填入到模板:
func fromTplToStr(tpl string, params map[string]interface{}) string { tplVar := fasttemplate.New(tpl, `{{`, `}}`) res := tplVar.ExecuteString(params) return res }
在模板求值的时候:
func (t *Template) ExecuteFuncString(f TagFunc) string { bb := t.byteBufferPool.Get() if _, err := t.ExecuteFunc(bb, f); err != nil { panic(fmt.Sprintf("unexpected error: %s", err)) } s := string(bb.Bytes()) bb.Reset() t.byteBufferPool.Put(bb) return s }
会对该 Template 对象的 byteBufferPool 进行 Get,在使用完之后,把 ByteBuffer Reset 再放回到对象池中。但问题在于,我们的 Template 对象本身并没有进行复用,所以这里的 byteBufferPool 本身的作用其实并没有发挥出来。
相反的,因为每一个请求都需要新生成一个 sync.Pool,在高并发场景下,执行时会卡在 bb := t.byteBufferPool.Get() 这一句上,通过压测可以比较快地发现问题,达到一定 QPS 压力时,会有大量的 Goroutine 堆积,比如下面有 18910 个 G 堆积在抢锁代码上:
goroutine profile: total 18910 18903 @ 0x102f20b 0x102f2b3 0x103fa4c 0x103f77d 0x10714df 0x1071d8f 0x1071d26 0x1071a5f 0x12feeb8 0x13005f0 0x13007c3 0x130107b 0x105c931 # 0x103f77c sync.runtime_SemacquireMutex+0x3c /usr/local/go/src/runtime/sema.go:71 # 0x10714de sync.(*Mutex).Lock+0xfe /usr/local/go/src/sync/mutex.go:134 # 0x1071d8e sync.(*Pool).pinSlow+0x3e /usr/local/go/src/sync/pool.go:198 # 0x1071d25 sync.(*Pool).pin+0x55 /usr/local/go/src/sync/pool.go:191 # 0x1071a5e sync.(*Pool).Get+0x2e /usr/local/go/src/sync/pool.go:128 # 0x12feeb7 github.com/valyala/fasttemplate/vendor/github.com/valyala/bytebufferpool.(*Pool).Get+0x37 /Users/xargin/go/src/github.com/valyala/fasttemplate/vendor/github.com/valyala/bytebufferpool/pool.go:49 # 0x13005ef github.com/valyala/fasttemplate.(*Template).ExecuteFuncString+0x3f /Users/xargin/go/src/github.com/valyala/fasttemplate/template.go:278 # 0x13007c2 github.com/valyala/fasttemplate.(*Template).ExecuteString+0x52 /Users/xargin/go/src/github.com/valyala/fasttemplate/template.go:299 # 0x130107a main.loop.func1+0x3a /Users/xargin/test/go/http/httptest.go:22
有大量的 Goroutine 会阻塞在获取锁上,为什么呢?继续看看 sync.Pool 的 Get 流程:
func (p *Pool) Get() interface{} { if race.Enabled { race.Disable() } l := p.pin() x := l.private l.private = nil runtime_procUnpin()
然后是 pin:
func (p *Pool) pin() *poolLocal { pid := runtime_procPin() s := atomic.LoadUintptr(&p.localSize) // load-acquire l := p.local // load-consume if uintptr(pid) < s { return indexLocal(l, pid) } return p.pinSlow() }
因为每一个对象的 sync.Pool 都是空的,所以 pin 的流程一定会走到 p.pinSlow:
func (p *Pool) pinSlow() *poolLocal { runtime_procUnpin() allPoolsMu.Lock() defer allPoolsMu.Unlock() pid := runtime_procPin()
而 pinSlow 中会用 allPoolsMu 来加锁,这个 allPoolsMu 主要是为了保护 allPools 变量:
var ( allPoolsMu Mutex allPools []*Pool )
在加了锁的情况下,会把用户新生成的 sync.Pool 对象 append 到 allPools 中:
if p.local == nil { allPools = append(allPools, p) }
标准库的 sync.Pool 之所以要维护这么一个 allPools 意图也比较容易推测,主要是为了 GC 的时候对 pool 进行清理,这也就是为什么说使用 sync.Pool 做对象池时,其中的对象活不过一个 GC 周期的原因。sync.Pool 本身也是为了解决大量生成临时对象对 GC 造成的压力问题。
说完了流程,问题也就比较明显了,每一个用户请求最终都需要去抢一把全局锁,高并发场景下全局锁是大忌。但是这个全局锁是因为开源库间接带来的全局锁问题,通过看自己的代码并不是那么容易发现。
知道了问题,改进方案其实也还好实现,***是可以修改开源库,将 template 的 sync.Pool 作为全局对象来引用,这样大部分 pool.Get 不会走到 pinSlow 流程。第二是对 fasttemplate.Template 对象进行复用,道理也是一样的,就不会有那么多的 sync.Pool 对象生成了。但前面也提到了,这个是个间接问题,如果开发工作繁忙,不太可能所有的依赖库把代码全看完之后再使用,这种情况下怎么避免线上的故障呢?
压测尽量早做呗。
metrics 上报和 log 锁
这两个本质都是一样的问题,就放在一起了。
公司之前 metrics 上报 client 都是基于 udp 的,大多数做的简单粗暴,就是一个 client,用户传什么就写什么,最终一定会走到:
func (c *UDPConn) WriteToUDP(b []byte, addr *UDPAddr) (int, error) { ---------- 刨去无用细节 n, err := c.writeTo(b, addr) ---------- 刨去无用细节 return n, err }
或者是:
func (c *UDPConn) WriteTo(b []byte, addr Addr) (int, error) { ---------- 刨去无用细节 n, err := c.writeTo(b, a) ---------- 刨去无用细节 return n, err }
调用的是:
func (c *UDPConn) writeTo(b []byte, addr *UDPAddr) (int, error) { ---------- 刨去无用细节 return c.fd.writeTo(b, sa) }
然后:
func (fd *netFD) writeTo(p []byte, sa syscall.Sockaddr) (n int, err error) { n, err = fd.pfd.WriteTo(p, sa) runtime.KeepAlive(fd) return n, wrapSyscallError("sendto", err) }
然后是:
func (fd *FD) WriteTo(p []byte, sa syscall.Sockaddr) (int, error) { if err := fd.writeLock(); err != nil { =========> 重点在这里 return 0, err } defer fd.writeUnlock() for { err := syscall.Sendto(fd.Sysfd, p, 0, sa) if err == syscall.EAGAIN && fd.pd.pollable() { if err = fd.pd.waitWrite(fd.isFile); err == nil { continue } } if err != nil { return 0, err } return len(p), nil } }
本质上,就是在高成本的网络操作上套了一把大的写锁,同样在高并发场景下会导致大量的锁冲突,进而导致大量的 Goroutine 堆积和接口延迟。
同样的,知道了问题,解决办法也很简单。再看看日志相关的。因为公司目前大部分日志都是直接向文件系统写,本质上同一个时刻操作的是同一个文件,最终都会走到:
func (f *File) Write(b []byte) (n int, err error) { n, e := f.write(b) return n, err } func (f *File) write(b []byte) (n int, err error) { n, err = f.pfd.Write(b) runtime.KeepAlive(f) return n, err }
然后:
func (fd *FD) Write(p []byte) (int, error) { if err := fd.writeLock(); err != nil { =========> 又是 writeLock return 0, err } defer fd.writeUnlock() if err := fd.pd.prepareWrite(fd.isFile); err != nil { return 0, err } var nn int for { ----- 略去不相关内容 n, err := syscall.Write(fd.Sysfd, p[nn:max]) ----- 略去无用内容 } }
和 UDP 网络 FD 一样有 writeLock,在系统打日志打得很多的情况下,这个 writeLock 会导致和 metrics 上报一样的问题。
“Go系统遇到的锁问题有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!