资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python中怎么使用pandas实现时序处理-创新互联

今天就跟大家聊聊有关python中怎么使用pandas实现时序处理,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

在高昌等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站制作、做网站 网站设计制作按需策划设计,公司网站建设,企业网站建设,成都品牌网站建设,网络营销推广,成都外贸网站制作,高昌网站建设费用合理。

创建时间序列

函数pd.date_range()

根据指定的范围,生成时间序列DatetimeIndex,每隔元素的类型为Timestamp。该函数应用较多。

ts = pd.date_range('2017-09-01', periods=10, freq='d', normalize=False)
ts

输出为:

DatetimeIndex(['2017-09-01', '2017-09-02', '2017-09-03', '2017-09-04',
'2017-09-05', '2017-09-06', '2017-09-07', '2017-09-08',
'2017-09-09', '2017-09-10'],
dtype='datetime64[ns]', freq='D'

主要的入参解析:

  • start: 开始时刻,可以是字符串或者datetime类型的值。默认None。

  • end: 结束时刻,可以是字符串或者datetime类型的值,如果指定了长度,即periods,则可不设置。默认None。

  • periods: 时序的长度,整型类型。如果有end,可不设置。默认None。

  • freq: 时序生成的频率,即每隔多少时刻生成一个时序点。字符串类型或者DateOffset类型。默认'D',即天粒度,见上述代码输出。

  • tz: 时区,字符串类型。默认None。

  • normalize: bool类型,没用过,不知道干啥的。

  • name: 设置时序的名称,字符串类型,默认None。

  • closed: 是否包含两边的值。默认None,即两边都保留。

其中,freq的取值可以为如下的符号表示间隔,可以结合符号和数字,如'3d',表示每隔三天记录一个时间点。大小写都可以。

B business day frequency
C custom business day frequency (experimental)
D calendar day frequency
W weekly frequency
M month end frequency
SM semi-month end frequency (15th and end of month)
BM business month end frequency
CBM custom business month end frequency
MS month start frequency
SMS semi-month start frequency (1st and 15th)
BMS business month start frequency
CBMS custom business month start frequency
Q quarter end frequency
BQ business quarter endfrequency
QS quarter start frequency
BQS business quarter start frequency
A year end frequency
BA business year end frequency
AS year start frequency
BAS business year start frequency
BH business hour frequency
H hourly frequency
T, min minutely frequency
S secondly frequency
L, ms milliseconds
U, us microseconds
N nanoseconds

字符串转换为时间戳

pd.to_datetime() 函数可以将表示时间的字符串转换位TimeStamp。

pd.to_datetime('2017-09-01')

输出为:

Timestamp('2017-09-01 00:00:00')

常用的参数:

format: 用来设置字符串的格式,默认如上所示。

时间戳的加减
有时候需要将时间进行增减,可以使用类型:DateOffset。

pd.to_datetime('2017-09-01') + pd.DateOffset(days=10)

输出为:

Timestamp('2017-09-11 00:00:00')

DateOffset常用的参数:

  • months,设置月。

  • days,设置天。

  • years,设置年。

  • hours,设置小时。

  • minutes,设置分钟。

  • seconds,设置秒。

以上可以同时设置,组合使用。

pd.to_datetime('2017-09-01') + pd.DateOffset(seconds=10, days = 10)

输出为:

Timestamp('2017-09-11 00:00:10')

看完上述内容,你们对python中怎么使用pandas实现时序处理有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。


网站标题:python中怎么使用pandas实现时序处理-创新互联
网站网址:http://cdkjz.cn/article/ghhch.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220