资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python如何将两张图片生成为全景图片-创新互联

本文实例为大家分享了python将两张图片生成全景图片的具体代码,供大家参考,具体内容如下

成都创新互联专注骨干网络服务器租用10年,服务更有保障!服务器租用,温江服务器托管 成都服务器租用,成都服务器托管,骨干网络带宽,享受低延迟,高速访问。灵活、实现低成本的共享或公网数据中心高速带宽的专属高性能服务器。

1、全景图片的介绍

全景图通过广角的表现手段以及绘画、相片、视频、三维模型等形式,尽可能多表现出周围的环境。360全景,即通过对专业相机捕捉整个场景的图像信息或者使用建模软件渲染过后的图片,使用软件进行图片拼合,并用专门的播放器进行播放,即将平面照片或者计算机建模图片变为360 度全观,用于虚拟现实浏览,把二维的平面图模拟成真实的三维空间,呈现给观赏者。

2、如何实现

2.1、实现原理

主要是利用sift的特征提取与匹配,参考链接

2.2、实现代码

# -*- coding:utf-8 -*-
u'''
Created on 2019年6月14日
@author: wuluo
'''
__author__ = 'wuluo'
__version__ = '1.0.0'
__company__ = u'重庆交大'
__updated__ = '2019-06-14'
import numpy as np
import cv2 as cv
from PIL import Image
from matplotlib import pyplot as plt
print('cv version: ', cv.__version__)

def pinjie():
 top, bot, left, right = 100, 100, 0, 500
 img1 = cv.imread('G:/2018and2019two/qianrushi/wuluo1.png')
 cv.imshow("img1", img1)
 img2 = cv.imread('G:/2018and2019two/qianrushi/wuluo2.png')
 cv.imshow("img2", img2)
 srcImg = cv.copyMakeBorder(
  img1, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
 testImg = cv.copyMakeBorder(
  img2, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
 img1gray = cv.cvtColor(srcImg, cv.COLOR_BGR2GRAY)
 img2gray = cv.cvtColor(testImg, cv.COLOR_BGR2GRAY)
 sift = cv.xfeatures2d_SIFT().create()
 # find the keypoints and descriptors with SIFT
 kp1, des1 = sift.detectAndCompute(img1gray, None)
 kp2, des2 = sift.detectAndCompute(img2gray, None)
 # FLANN parameters
 FLANN_INDEX_KDTREE = 1
 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
 search_params = dict(checks=50)
 flann = cv.FlannBasedMatcher(index_params, search_params)
 matches = flann.knnMatch(des1, des2, k=2)
 
 # Need to draw only good matches, so create a mask
 matchesMask = [[0, 0] for i in range(len(matches))]

 good = []
 pts1 = []
 pts2 = []
 # ratio test as per Lowe's paper
 for i, (m, n) in enumerate(matches):
  if m.distance < 0.7 * n.distance:
   good.append(m)
   pts2.append(kp2[m.trainIdx].pt)
   pts1.append(kp1[m.queryIdx].pt)
   matchesMask[i] = [1, 0]

 draw_params = dict(matchColor=(0, 255, 0),
      singlePointColor=(255, 0, 0),
      matchesMask=matchesMask,
      flags=0)
 img3 = cv.drawMatchesKnn(img1gray, kp1, img2gray,
        kp2, matches, None, **draw_params)
 #plt.imshow(img3, ), plt.show()

 rows, cols = srcImg.shape[:2]
 MIN_MATCH_COUNT = 10
 if len(good) > MIN_MATCH_COUNT:
  src_pts = np.float32(
   [kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
  dst_pts = np.float32(
   [kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
  M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC, 5.0)
  warpImg = cv.warpPerspective(testImg, np.array(
   M), (testImg.shape[1], testImg.shape[0]), flags=cv.WARP_INVERSE_MAP)

  for col in range(0, cols):
   if srcImg[:, col].any() and warpImg[:, col].any():
    left = col
    break
  for col in range(cols - 1, 0, -1):
   if srcImg[:, col].any() and warpImg[:, col].any():
    right = col
    break

  res = np.zeros([rows, cols, 3], np.uint8)
  for row in range(0, rows):
   for col in range(0, cols):
    if not srcImg[row, col].any():
     res[row, col] = warpImg[row, col]
    elif not warpImg[row, col].any():
     res[row, col] = srcImg[row, col]
    else:
     srcImgLen = float(abs(col - left))
     testImgLen = float(abs(col - right))
     alpha = srcImgLen / (srcImgLen + testImgLen)
     res[row, col] = np.clip(
      srcImg[row, col] * (1 - alpha) + warpImg[row, col] * alpha, 0, 255)

  # opencv is bgr, matplotlib is rgb
  res = cv.cvtColor(res, cv.COLOR_BGR2RGB)
  # show the result
  plt.figure()
  plt.imshow(res)
  plt.show()
 else:
  print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
  matchesMask = None

if __name__ == "__main__":
 pinjie()

网页名称:python如何将两张图片生成为全景图片-创新互联
网页路径:http://cdkjz.cn/article/gehid.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220