资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python中的比较函数,python的函数和方法区别

python中是否有用于计算两个字符串相似度的函数

linux环境下,没有首先安装python_Levenshtein,用法如下:

公司主营业务:成都做网站、成都网站设计、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联推出丰县免费做网站回馈大家。

重点介绍几个该包中的几个计算字串相似度的几个函数实现。

1. Levenshtein.hamming(str1, str2)

计算汉明距离。要求str1和str2必须长度一致。是描述两个等长字串之间对应位置上不同字符的个数。如

2. Levenshtein.distance(str1, str2)

计算编辑距离(也成Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入、删除、替换。如

算法实现 参考动态规划整理:。

3. Levenshtein.ratio(str1, str2)

计算莱文斯坦比。计算公式 r = (sum - ldist) / sum, 其中sum是指str1 和 str2 字串的长度总和,ldist是类编辑距离

注意:这里的类编辑距离不是2中所说的编辑距离,2中三种操作中每个操作+1,而在此处,删除、插入依然+1,但是替换+2

这样设计的目的:ratio('a', 'c'),sum=2,按2中计算为(2-1)/2 = 0.5,’a','c'没有重合,显然不合算,但是替换操作+2,就可以解决这个问题。

4. Levenshtein.jaro(s1, s2)

计算jaro距离,

其中的m为s1, s2的匹配长度,当某位置的认为匹配 当该位置字符相同,或者在不超过

t是调换次数的一半

5. Levenshtein.jaro_winkler(s1, s2)

计算Jaro–Winkler距离

python 里面有没有比较两个列表的函数?

仅限没有重复的情况。

gt;gt;gt; a=[1,2,3,4,5,6]

gt;gt;gt; b=[1,2,3]

gt;gt;gt; set(a)-set(b)

set([4, 5, 6])

如果要考虑重复的话,就有点麻烦了:

from math import fabs

def compare(list1,list2):

nbsp;nbsp;nbsp;dict1=dict()

nbsp;nbsp;nbsp;dict2=dict()

nbsp;nbsp;nbsp;total = list(set(list1+list2))

nbsp;nbsp;nbsp;dif = []

nbsp;nbsp;nbsp;for i in list1:

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;if str(i) in dict1:

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;dict1[str(i)] += 1

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;else:

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;dict1[str(i)] = 1

nbsp;nbsp;nbsp;for i in list2:

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;if str(i) in dict2:

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;dict2[str(i)] += 1

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;else:

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;dict2[str(i)] = 1

nbsp;nbsp;nbsp;for i in total:

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;if str(i) not in dict1 or str(i) not in dict2:

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;if str(i) in dict1:

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;for num in range(int(dict1[str(i)])):

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;dif.append(i)

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;else:

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;for num in range(int(dict2[str(i)])):

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;dif.append(i)

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;else:

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;count = fabs(int(dict1[str(i)])-int(dict2[str(i)]))

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;for num in range(int(count)):

nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;dif.append(i)

nbsp;nbsp;nbsp;return dif

a=[1,1,1,1,2,3,4,4,4,5,6,7,8,9]

b=[2,2,2,2,3,4,4,4,4,5,6,7,8,9,10,11]

print compare(a,b)

python使用了for,if,elif,else语句,定义一个比较大小的函数?

方法用错了, 首先不能是DataFrame的applymap方法 这个方法是对每一个元素进行处理的

其次, 处理函数(你的func_wd)是接受一个值, 返回一个值, 不是接受一堆值然后循环

def func_wd(x) 这个x就是wd那一列中的某一个值, 里面直接分支返回就行了:

在map这个方法的时候, 用Series的apply:

data['wd'] = data['wd'].apply(fuc_wd)

这样就行了

python怎么比较两个字符串相等

可以直接使用python的内建函数cmp():

s1='hello'

s2='hell'

s3='hello world'

s4='hello'

cmp(s1,s2)

#输出结果为1

cmp(s1,s3)

#输出结果为-1

cmp(s1,s4)

#输出结果为0


名称栏目:python中的比较函数,python的函数和方法区别
路径分享:http://cdkjz.cn/article/dsshdgg.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220