资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

跟我学Python图像处理丨傅里叶变换之高通滤波和低通滤波

摘要:本文讲解基于傅里叶变换的高通滤波和低通滤波。

本文分享自华为云社区《[Python图像处理] 二十三.傅里叶变换之高通滤波和低通滤波》,作者:eastmount 。

成都创新互联主营衡阳县网站建设的网络公司,主营网站建设方案,App定制开发,衡阳县h5成都微信小程序搭建,衡阳县网站营销推广欢迎衡阳县等地区企业咨询

一.高通滤波

傅里叶变换的目的并不是为了观察图像的频率分布(至少不是最终目的),更多情况下是为了对频率进行过滤,通过修改频率以达到图像增强、图像去噪、边缘检测、特征提取、压缩加密等目的。

过滤的方法一般有三种:低通(Low-pass)、高通(High-pass)、带通(Band-pass)。所谓低通就是保留图像中的低频成分,过滤高频成分,可以把过滤器想象成一张渔网,想要低通过滤器,就是将高频区域的信号全部拉黑,而低频区域全部保留。例如,在一幅大草原的图像中,低频对应着广袤且颜色趋于一致的草原,表示图像变换缓慢的灰度分量;高频对应着草原图像中的老虎等边缘信息,表示图像变换较快的灰度分量,由于灰度尖锐过度造成

高通滤波器是指通过高频的滤波器,衰减低频而通过高频,常用于增强尖锐的细节,但会导致图像的对比度会降低。该滤波器将检测图像的某个区域,根据像素与周围像素的差值来提升像素的亮度。图展示了“Lena”图对应的频谱图像,其中心区域为低频部分。

接着通过高通滤波器覆盖掉中心低频部分,将255两点变换为0,同时保留高频部分,其处理过程如下图所示。

rows, cols = img.shape
crow,ccol= int(rows/2), int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0

本文名称:跟我学Python图像处理丨傅里叶变换之高通滤波和低通滤波
新闻来源:http://cdkjz.cn/article/dsogscg.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220