资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

数据分析函数python,数据分析函数公式

怎样用 Python 进行数据分析?

做数据分析,首先你要知道有哪些数据分析的方法,然后才是用Python去调用这些方法

在昭苏等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站建设、成都网站制作 网站设计制作按需开发,公司网站建设,企业网站建设,成都品牌网站建设,营销型网站,成都外贸网站建设公司,昭苏网站建设费用合理。

那Python有哪些库类是能做数据分析的,很多,pandas,sklearn等等

所以你首先要装一个anaconda套件,它包含了几乎所有的Python数据分析工具,

之后再学怎么分析。

python数据分析是干什么的

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

类型(推荐学习:Python视频教程)

在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。

探索性数据分析是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。该方法由美国著名统计学家约翰·图基(John Tukey)命名。

定性数据分析又称为“定性资料分析”、“定性研究”或者“质性研究资料分析”,是指对诸如词语、照片、观察结果之类的非数值型数据(或者说资料)的分析

建议大家使用python进行数据分析,原因有以下四点:

python语言非常的简单、易学,适合初学者作为入门语言

Python的语法简单,代码可读性高,容易入门,有利于初学者学习。举个例子,假如我们在处理数据的时候,希望把用户性别数据数值化,也就是变成计算机可以运算的数字形式,我们可以直接用一行列表推导式完成,十分的简洁,

python拥有强大的通用编程能力

不同于R或者matlab,python不仅在数据分析方面能力强大,在爬虫、web、自动化运维甚至游戏等等很多领域都有广泛的应用。这就使公司使用一种技术完成全部服务成为可能,有利于各个技术组之间的业务融合。比如,我们用python的爬虫框架scrapy爬取数据,然后交给pandas做数据处理,最后使用python的web框架django给用户作展示,这一系列任务可以全部用python完成,能大大提高公司的技术效率。

Python拥有一个巨大而活跃的科学计算社区

Python在数据分析和交互、探索性计算以及数据可视化等方面都有非常成熟的库和活跃的社区,使python成为数据处理任务重要解决方案。在科学计算方面,python拥有numpy、pandas、matplotpb、scikit-learn、ipython等等一系列非常优秀的库和工具,特别是pandas在处理中型数据方面可以说有着无与伦比的优势,正在成为各行业数据处理任务的首选库。

python是人工智能时代的通用语言

在人工智能火热的今天,python已经成为了最受欢迎的编程语言。得益于python的简洁、丰富的库和社区,大部分深度学习框架都优先支持python语言编程,比如当今最火热的深度学习框架tensorflow,它虽然是C++编写的,但对python语言支持最好。

更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python数据分析是干什么的的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!

利用python实现数据分析

链接:

提取码:7234

炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。

课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。

课程目录:

Python基础

Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符

了解Python流程控制——条件、循环语句与其他语句

常用函数——函数的定义与使用方法、主要内置函数的介绍

.....

python可以做哪些数据分析

1、检查数据表

Python中使用shape函数来查看数据表的维度,也就是行数和列数。你可以使用info函数查看数据表的整体信息,使用dtypes函数来返回数据格式。Isnull是Python中检验空值的函数,你可以对整个数据表进行检查,也可以单独对某一列进行空值检查,返回的结果是逻辑值,包含空值返回True,不包含则返回False。使用unique函数查看唯一值,使用Values函数用来查看数据表中的数值。

2、数据表清洗

Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充。Python中dtype是查看数据格式的函数,与之对应的是astype函数,用来更改数据格式,Rename是更改列名称的函数,drop_duplicates函数删除重复值,replace函数实现数据替换。

3、数据预处理

数据预处理是对清洗完的数据进行整理以便后期的统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组及标记等工作。在Python中可以使用merge函数对两个数据表进行合并,合并的方式为inner,此外还有left、right和outer方式。使用ort_values函数和sort_index函数完成排序,使用where函数完成数据分组,使用split函数实现分列。

4、数据提取

主要是使用三个函数:loc、iloc和ix,其中loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。除了按标签和位置提起数据以外,还可以按具体的条件进行数据,比如使用loc和isin两个函数配合使用,按指定条件对数据进行提取。

5、数据筛选汇总

Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和 count函数还能实现excel中sumif和countif函数的功能。Python中使用的主要函数是groupby和pivot_table。groupby是进行分类汇总的函数,使用方法很简单,制定要分组的列名称就可以,也可以同时制定多个列名称,groupby 按列名称出现的顺序进行分组。


当前标题:数据分析函数python,数据分析函数公式
网页链接:http://cdkjz.cn/article/dsioggd.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220