android埋点主要是为了采集数据,
站在用户的角度思考问题,与客户深入沟通,找到坡头网站设计与坡头网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:做网站、成都网站制作、企业官网、英文网站、手机端网站、网站推广、域名注册、网络空间、企业邮箱。业务覆盖坡头地区。
ab测试也需要在移动/h5上埋点采集重点业务数据,
这样测试才能有的放矢,吆喝科技的AppAdhoc
AB Testing可
以实现快速简单的android代码埋点。
加入XCode工程,实现基本使用 导入SDK 下载Analytics_iPhone_SDK_1.6.4.zip并解压缩 解压缩之后可以看到如下2个文件: MobClick.h libMobClickLibrary.a 我们在编辑SDK时,使用的设置为 Base SDK:iOS 4.2,iOS Depolyment Target: iOS 3.0,因此该版本的SDK支持从iOS 3.0 ~ 4.2的设备使用,在工程中引入友盟统计SDK时,推荐设置Base SDK为最新的iOS SDK最新版(当前最新版为iOS 4.2)导入插件 请在你的工程目录结构中,右键点击Classes文件夹,选择Add-Existing Files...选择这两个文件。或者将这两个文件拖入XCode工程目录结构中,在弹出的界面中选择Copy item
一,神策埋点
// 集成神策
[self initSensorsAnalyticsWithLaunchOptions:launchOptions];
2.集成友盟
//集成友盟
[UMConfigure initWithAppkey:@"5d54c7fa4ca3573ff2000f66" channel:@"App Store"];
[MobClick setScenarioType:E_UM_NORMAL];//支持普通场景??
//开发者需要显式的调用此函数,日志系统才能工作
[UMCommonLogManager setUpUMCommonLogManager];
在继承模版里的生命周期中编写,
}
电商类APP列表页,用户上下滑动,列表页中的item显示在屏幕中,此时数据分析上来看,item的显示(比如滑动停止或者停止1s),都认为是一次数据的曝光,此时会根据曝光率(曝光率= 点击量 / 曝光量)来分析用户(比如用户的喜好推荐数据的统计)
willDisplayCell 和cellForRowAtIndexPath对比:
先执行cellForRowAtIndexPath再执行willDisplayCell,cellForRowAtIndexPath一半用于 数据填充 ,willDisplayCell可用于 自定义分割线 ,对于实时性的埋点曝光统计,可用willDisplayCell方法实现。
UIScrollVIew 停止滚动的类型分为三种:
对于滑动停止这种条件性的曝光埋点,可用UIScrollVIew滑动停止的方法实现。
对于条件性曝光埋点,采用UIScrollVIew滑动停止方法实现,具体曝光条件是
上报时机就是监听滚动停止事件,做相关的埋点上传处理
这里可以根据获取NSIndexPath的数组的cell,获取对应的NSIndexPath的CGRect,这里我们的列表是竖着滑动,我们只获取cell的origin.y和size.height这两个属性
根据上面视图,cell可见可分为三类:
currentRect = tableView.convert(previousCellRect, to: self.view.superview)
计算相对于屏幕本身的rect属性
埋点是数据采集的专用术语,在数据驱动型业务中,如营销策略、产品迭代、业务分析、用户画像等,都依赖于数据提供决策支持,希望通过数据来捕捉特定的用户行为,如按钮点击量、阅读时长等统计信息。因此,数据埋点可以简单理解为:针对特定业务场景进行数据采集和上报的技术方案。
数据埋点非常看重两件事,一个是数据记录的准确性,另一个则是数据记录的完备性。
先讲数据的准确性。数据埋点非常强调规范和流程,因为参数的规范与合法,将直接影响到数据分析的准确性,如果准确性得不到保障,那么所有基于埋点得出的结论,都是不可信的。辛辛苦苦做了很久的方案,一旦因为一个疏忽的小问题,导致下游集中投诉,其实非常划不来。
道理每个人都懂,但现实情况中,数据埋点所面对的客观环境,其实非常复杂,例如:
因此本文有非常长的篇幅来写流程问题,其实是非常有必要的。
再讲数据的完备性。因为埋点主要是面向分析使用,对用户而言是个额外的功能,因此埋点的业务侵入性很强,很容易对用户体验造成影响。别的不说,仅仅是流量的消耗,就很容被用户喷。因此,要提前想清楚,我们要采集哪些东西,因为修改方案的成本,是伤不起的。
通常情况下,我们需要记录用户在使用产品过程中的操作行为,通过4W1H模型可以比较好的保障信息是完备的。4W1H包括:
规定好记录信息的基本方法之后,按照固定的频率,如每小时、每天,或者是固定的数量,比如多少条日志,或者是网络环境,比如在Wifi下上传,我们就可以开心的把埋点数据用起来了。
当然,数据记录的时效性也比较重要,但因为埋点数据通常量级会比较大,且各个端数据回传的时间不同,因此想做到实时统计,还是需要分场景来展开。在Flink技术日渐成熟的今天,全链路的实时采集与统计,已经不是什么难题。
在埋点的技术方案中,首先要重视的,是用户唯一标识的建设。如果做不到对用户的唯一识别,那么基础的UV统计,都将是错误的。
因此,在数据埋点方案中,有两个信息是一定要记录的,即设备ID+用户ID。设备ID代表用户使用哪个设备,如安卓的ANDROID_ID/IMEI,IOS中的IDFA/UDID,浏览器的Cookie,小程序的OpenID等。用户ID,代表用户在产品中所注册的账号,通常是手机号,也可以是邮箱等其他格式。
当这两个信息能够获得时,不论是用户更换设备,或者是同一台设备不同账号登录,我们都能够根据这两个ID,来识别出谁在对设备做操作。
其次,我们来看一下Web的数据采集技术。Web端数据采集主要通过三种方式实现:服务器日志、URL解析及JS回传。
浏览器的日志采集种类又可以分为两大类:页面浏览日志和页面交互日志。
除此之外,还有一些针对特定场合统计的日志,例如页面曝光时长日志、用户在线操作监控等,但原理都基于上述两类日志,只是在统计上有所区分。
再次,我们来看下客户端的数据采集。与网页日志对应的,是手机应用为基础的客户端日志,由于早期手机网络通讯能力较差,因而SDK往往采用延迟发送日志的方式,也就是先将日志统计在本地,然后选择在Wifi环境下上传,因而往往会出现统计数据延迟的情况。现如今网络环境好了很多,4G、5G流量充足,尤其是视频类APP基本上都是一直联网,因而很多统计能够做到实时统计。
客户端的日志统计主要通过SDK来完成,根据不同的用户行为分成不同的事件,“事件”是客户端日志行为的最小单位,根据类型的不同,可以分为页面事件(类比页面浏览)和控件点击事件(类比页面交互)。对于页面事件,不同的SDK有不同的方式,主要区别为是在页面创建时发送日志,还是在页面浏览结束后发送日志,区别在于业务统计是否需要采集用户的页面停留时长。
页面事件的统计主要统计如下三类信息:
埋点其实还需要考虑数据上传的方案,批量的数据可以通过Flume直接上报,流式的可以写到Kafka,或者直接使用Flink来处理。这些框架相关的内容不是本文考虑的重点,有兴趣的可以自行查阅资料。
有了指导思路和技术方案后,我们就可以着手制定相应的数据埋点流程规范了。
笼统上,流程规范会分成五个步骤,即需求评审、埋点申请、技术开发、埋点验证、发布上线。
第一步,需求评审。
前文提到过,数据埋点的方案一旦确定,返工和排查问题的成本都很高,但数据埋点之后的分析工作,又涉及到了PD、BI、算法、数据等多个角色。因此非常有必要,将需求内容和数据口径统一收口,所有人在一套口径下,将需求定义出来,随后业务侧再介入,进行埋点方案的设计和开发。
以前文提到的4W1H模型为例,常见的记录内容如下:
最后我们统计时,按照上述约定,统计用户在某个时间和地点中,看到了哪些信息,并完成了怎样的动作。上下游的相关人员,在使用这份数据时,产生的歧义或者是分歧,会小很多。
第二步,埋点申请
当下的热门应用,大多是以超级APP的形式出现,比如微信、淘宝、支付宝、抖音,超级APP会承载非常多的业务,因此技术方案上会十分统一。
因此,当我们的技术方案确定后,通常要在相应的埋点平台上,进行埋点申请。申请的内容包括分配的SPM、SCM码是什么,涉及到的平台是哪些,等等。SPM、SCM是什么,有什么用,同样可以自行查阅。
第三步,技术开发
当需求确定、申请通过后,我们就可以开始开发动作了,这里基本上是对研发同学进行约束。埋点的开发,简单讲,是分成行为埋点和事件埋点两个大类,每一类根据端的不同进行相应的开发。具体的技术方案详见前文01章节。
详细的设计规范,是需要留文档的,因为代码不能反应业务的真实意图,而不论是事后复盘与业务交接,都需要完整的文档来阐述设计思路。
第四步,埋点验证
埋点的验证很关键,如果上线后才发现问题,那么 历史 数据是无法追溯的。
验证有两种方式,一种是实时的功能验证,一种是离线的日志验证。
实时功能验证,指功能开发好后,在灰度环境上测试相应的埋点功能是否正常,比如点击相应的业务模块,日志是否会正确的打印出来。通常而言,我们需要验证如下三个类型的问题:
除去实时验证,我们也需要把日志写到测试环境中,查看数据上报的过程是否正确,以及对上报后的数据进行统计,侧面验证记录的准确性,如统计基本的PV、UV,行为、事件的发生数量。
很多时候,数据是需要多方验证的,存在一定的上下游信息不同步问题,比如对某个默认值的定义有歧义,日志统计会有效的发现这类问题。
第五步,发布上线。
应用的发布上线通常会有不同的周期,例如移动端会有统一的发版时间,而网页版只需要根据自己的节奏走,因此数据开始统计的时间是不同的。最后,应用应当对所有已发布的埋点数据,有统一的管理方法。
大多数时候,数据埋点的技术方案,只需要设计一次,但数据准确性的验证,却需要随着产品的生命周期持续下去,因此仅仅依靠人肉来准确性验证是不够的,我们需要平台来支持自动化的工作。埋点的准确性,大体有两种方法保障:一种是灰度环境下验证真实用户数据的准确性;另一种则是在线上环境中,验证全量数据的准确性。因此,发布上线之后,后续的管理动作,应该是对现有流程的自动化管理,因为团队大了,需要埋点的东西多种多样,让平台自己测试、自动化测试,就是很多测试团队必须走的路
ios埋点主要是为了采集数据,ab测试也需要在ios上埋点采集重点业务数据,吆喝科技提供的AppAdhoc
AB Testing可实现快速简单的ios埋点。