关系数据库经过几十年的发展,已经非常成熟,但同时也存在不足:
十载的瓯海网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网整合营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整瓯海建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“瓯海网站设计”,“瓯海网站推广”以来,每个客户项目都认真落实执行。
表结构是强约束的,业务变更时扩充很麻烦。
如果对大数据量的表进行统计运算,I/O会很高,因为即使只针对某列进行运算,也需要将整行数据读入内存。
全文搜索只能使用 Like 进行整表扫描,性能非常低。
针对这些不足,产生了不同的 NoSQL 解决方案,在某些场景下比关系数据库更有优势,但同时也牺牲了某些特性,所以不能片面的迷信某种方案,应将其作为 SQL 的有利补充。
NoSQL != No SQL,而是:
NoSQL = Not Only SQL
典型的 NoSQL 方案分为4类:
Redis 是典型,其 value 是具体的数据结构,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被称为数据结构服务器。
以 list 为例:
LPOP key 是移除并返回队列左边的第一个元素。
如果用关系数据库就比较麻烦了,需要操作:
Redis 的缺点主要体现在不支持完成的ACID事务,只能保证隔离性和一致性,无法保证原子性和持久性。
最大的特点是 no-schema,无需在使用前定义字段,读取一个不存在的字段也不会导致语法错误。
特点:
以电商为例,不同商品的属性差异很大,如冰箱和电脑,这种差异性在关系数据库中会有很大的麻烦,而使用文档数据库则非常方便。
文档数据库的主要缺点:
关系数据库是按行来存储的,列式数据库是按照列来存储数据。
按行存储的优势:
在某些场景下,这些优势就成为劣势了,例如,计算超重人员的数据,只需要读取体重这一列进行统计即可,但行式存储会将整行数据读取到内存中,很浪费。
而列式存储中,只需要读取体重这列的数据即可,I/O 将大大减少。
除了节省I/O,列式存储还有更高的压缩比,可以节省存储空间。普通行式数据库的压缩比在 3:1 到 5:1 左右,列式数据库在 8:1 到 30:1,因为单个列的数据相似度更高。
列式存储的随机写效率远低于行式存储,因为行式存储时同一行多个列都存储在连续空间中,而列式存储将不同列存储在不连续的空间。
一般将列式存储应用在离线大数据分析统计场景,因为这时主要针对部分列进行操作,而且数据写入后无须更新。
关系数据库通过索引进行快速查询,但在全文搜索的情景下,索引就不够了,因为:
假设有一个交友网站,信息表如下:
需要匹配性别、地点、语言列。
需要匹配性别、地点、爱好列。
实际搜索中,各种排列组合非常多,关系数据库很难支持。
全文搜索引擎是使用 倒排索引 技术,建立单词到文档的索引,例如上面的表信息建立倒排索引:
所以特别适合根据关键词来查询文档内容。
上面介绍了几种典型的NoSQL方案,及各自的适用场景和特点,您可以根据实际需求进行选择。
“NoSQL,指的是非关系型的数据库。NoSQL有时也称作Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统的统称。NoSQL用于超大规模数据的存储。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。”
1、性能
都比较高,性能对我们来说应该都不是瓶颈。
总体来讲,TPS 方面 redis 和 memcache 差不多,要大于 mongodb。
2、操作的便利性
memcache 数据结构单一。(key-value)
redis 丰富一些,数据操作方面,redis 更好一些,较少的网络 IO 次数,同时还提供 list,set,
hash 等数据结构的存储。
mongodb 支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富。
3、内存空间的大小和数据量的大小
redis 在 2.0 版本后增加了自己的 VM 特性,突破物理内存的限制;可以对 key value 设置过
期时间(类似 memcache)
memcache 可以修改最大可用内存,采用 LRU 算法。Memcached 代理软件 magent,比如建立
10 台 4G 的 Memcache 集群,就相当于有了 40G。 magent -s 10.1.2.1 -s 10.1.2.2:11211 -b
10.1.2.3:14000 mongoDB 适合大数据量的存储,依赖操作系统 VM 做内存管理,吃内存也比较厉害,服务
不要和别的服务在一起。
4、可用性(单点问题)
对于单点问题,
redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整
个快照,无增量复制,因性能和效率问题,
所以单点问题比较复杂;不支持自动 sharding,需要依赖程序设定一致 hash 机制。
一种替代方案是,不用 redis 本身的复制机制,采用自己做主动复制(多份存储),或者改成
增量复制的方式(需要自己实现),一致性问题和性能的权衡
Memcache 本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的 hash 或者环
状的算法,解决单点故障引起的抖动问题。
mongoDB 支持 master-slave,replicaset(内部采用 paxos 选举算法,自动故障恢复),auto sharding 机制,对客户端屏蔽了故障转移和切分机制。
5、可靠性(持久化)
对于数据持久化和数据恢复,
redis 支持(快照、AOF):依赖快照进行持久化,aof 增强了可靠性的同时,对性能有所影
响
memcache 不支持,通常用在做缓存,提升性能;
MongoDB 从 1.8 版本开始采用 binlog 方式支持持久化的可靠性
6、数据一致性(事务支持)
Memcache 在并发场景下,用 cas 保证一致性redis 事务支持比较弱,只能保证事务中的每个操作连续执行
mongoDB 不支持事务
7、数据分析
mongoDB 内置了数据分析的功能(mapreduce),其他不支持
8、应用场景
redis:数据量较小的更性能操作和运算上
memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写
少,对于数据量比较大,可以采用 sharding)
MongoDB:主要解决海量数据的访问效率问题。
表格比较:
memcache redis 类型 内存数据库 内存数据库
数据类型 在定义 value 时就要固定数据类型 不需要
有字符串,链表,集 合和有序集合
虚拟内存 不支持 支持
过期策略 支持 支持
分布式 magent master-slave,一主一从或一主多从
存储数据安全 不支持 使用 save 存储到 dump.rdb 中
灾难恢复 不支持 append only file(aof)用于数据恢复
性能
1、类型——memcache 和 redis 都是将数据存放在内存,所以是内存数据库。当然,memcache 也可用于缓存其他东西,例如图片等等。
2、 数据类型——Memcache 在添加数据时就要指定数据的字节长度,而 redis 不需要。
3、 虚拟内存——当物理内存用完时,可以将一些很久没用到的 value 交换到磁盘。
4、 过期策略——memcache 在 set 时就指定,例如 set key1 0 0 8,即永不过期。Redis 可以通
过例如 expire 设定,例如 expire name 10。
5、 分布式——设定 memcache 集群,利用 magent 做一主多从;redis 可以做一主多从。都可
以一主一从。
6、 存储数据安全——memcache 断电就断了,数据没了;redis 可以定期 save 到磁盘。
7、 灾难恢复——memcache 同上,redis 丢了后可以通过 aof 恢复。
Memecache 端口 11211
yum -y install memcached
yum -y install php-pecl-memcache
/etc/init.d/memcached start memcached -d -p 11211 -u memcached -m 64 -c 1024 -P /var/run/memcached/memcached.pid
-d 启动一个守护进程
-p 端口
-m 分配的内存是 M
-c 最大运行并发数-P memcache 的 pid
//0 压缩(是否 MEMCACHE_COMPRESSED) 30 秒失效时间
//delete 5 是 timeout
1. CouchDB
所用语言: Erlang
特点:DB一致性,易于使用
使用许可: Apache
协议: HTTP/REST
双向数据复制,
持续进行或临时处理,
处理时带冲突检查,
因此,采用的是master-master复制(见编注2)
MVCC – 写操作不阻塞读操作
可保存文件之前的版本
Crash-only(可靠的)设计
需要不时地进行数据压缩
视图:嵌入式 映射/减少
格式化视图:列表显示
支持进行服务器端文档验证
支持认证
根据变化实时更新
支持附件处理
因此, CouchApps(独立的 js应用程序)
需要 jQuery程序库
最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。
例如: CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。
(编注2:master-master复制:是一种数据库同步方法,允许数据在一组计算机之间共享数据,并且可以通过小组中任意成员在组内进行数据更新。)
2. Redis
所用语言:C/C++
特点:运行异常快
使用许可: BSD
协议:类 Telnet
有硬盘存储支持的内存数据库,
但自2.0版本以后可以将数据交换到硬盘(注意, 2.4以后版本不支持该特性!)
Master-slave复制(见编注3)
虽然采用简单数据或以键值索引的哈希表,但也支持复杂操作,例如 ZREVRANGEBYSCORE。
INCR co (适合计算极限值或统计数据)
支持 sets(同时也支持 union/diff/inter)
支持列表(同时也支持队列;阻塞式 pop操作)
支持哈希表(带有多个域的对象)
支持排序 sets(高得分表,适用于范围查询)
Redis支持事务
支持将数据设置成过期数据(类似快速缓冲区设计)
Pub/Sub允许用户实现消息机制
最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。
例如:股票价格、数据分析、实时数据搜集、实时通讯。
(编注3:Master-slave复制:如果同一时刻只有一台服务器处理所有的复制请求,这被称为
Master-slave复制,通常应用在需要提供高可用性的服务器集群。)
3. MongoDB
所用语言:C++
特点:保留了SQL一些友好的特性(查询,索引)。
使用许可: AGPL(发起者: Apache)
协议: Custom, binary( BSON)
Master/slave复制(支持自动错误恢复,使用 sets 复制)
内建分片机制
支持 javascript表达式查询
可在服务器端执行任意的 javascript函数
update-in-place支持比CouchDB更好
在数据存储时采用内存到文件映射
对性能的关注超过对功能的要求
建议最好打开日志功能(参数 –journal)
在32位操作系统上,数据库大小限制在约2.5Gb
空数据库大约占 192Mb
采用 GridFS存储大数据或元数据(不是真正的文件系统)
最佳应用场景:适用于需要动态查询支持;需要使用索引而不是 map/reduce功能;需要对大数据库有性能要求;需要使用
CouchDB但因为数据改变太频繁而占满内存的应用程序。
例如:你本打算采用 MySQL或 PostgreSQL,但因为它们本身自带的预定义栏让你望而却步。
4. Riak
所用语言:Erlang和C,以及一些Javascript
特点:具备容错能力
使用许可: Apache
协议: HTTP/REST或者 custom binary
可调节的分发及复制(N, R, W)
用 JavaScript or Erlang在操作前或操作后进行验证和安全支持。
使用JavaScript或Erlang进行 Map/reduce
连接及连接遍历:可作为图形数据库使用
索引:输入元数据进行搜索(1.0版本即将支持)
大数据对象支持( Luwak)
提供“开源”和“企业”两个版本
全文本搜索,索引,通过 Riak搜索服务器查询( beta版)
支持Masterless多站点复制及商业许可的 SNMP监控
最佳应用场景:适用于想使用类似 Cassandra(类似Dynamo)数据库但无法处理
bloat及复杂性的情况。适用于你打算做多站点复制,但又需要对单个站点的扩展性,可用性及出错处理有要求的情况。
例如:销售数据搜集,工厂控制系统;对宕机时间有严格要求;可以作为易于更新的 web服务器使用。
5. Membase
所用语言: Erlang和C
特点:兼容 Memcache,但同时兼具持久化和支持集群
使用许可: Apache 2.0
协议:分布式缓存及扩展
非常快速(200k+/秒),通过键值索引数据
可持久化存储到硬盘
所有节点都是唯一的( master-master复制)
在内存中同样支持类似分布式缓存的缓存单元
写数据时通过去除重复数据来减少 IO
提供非常好的集群管理 web界面
更新软件时软无需停止数据库服务
支持连接池和多路复用的连接代理
最佳应用场景:适用于需要低延迟数据访问,高并发支持以及高可用性的应用程序
例如:低延迟数据访问比如以广告为目标的应用,高并发的 web 应用比如网络游戏(例如 Zynga)
6. Neo4j
所用语言: Java
特点:基于关系的图形数据库
使用许可: GPL,其中一些特性使用 AGPL/商业许可
协议: HTTP/REST(或嵌入在 Java中)
可独立使用或嵌入到 Java应用程序
图形的节点和边都可以带有元数据
很好的自带web管理功能
使用多种算法支持路径搜索
使用键值和关系进行索引
为读操作进行优化
支持事务(用 Java api)
使用 Gremlin图形遍历语言
支持 Groovy脚本
支持在线备份,高级监控及高可靠性支持使用 AGPL/商业许可
最佳应用场景:适用于图形一类数据。这是 Neo4j与其他nosql数据库的最显著区别
例如:社会关系,公共交通网络,地图及网络拓谱
7. Cassandra
所用语言: Java
特点:对大型表格和 Dynamo支持得最好
使用许可: Apache
协议: Custom, binary (节约型)
可调节的分发及复制(N, R, W)
支持以某个范围的键值通过列查询
类似大表格的功能:列,某个特性的列集合
写操作比读操作更快
基于 Apache分布式平台尽可能地 Map/reduce
我承认对 Cassandra有偏见,一部分是因为它本身的臃肿和复杂性,也因为 Java的问题(配置,出现异常,等等)
最佳应用场景:当使用写操作多过读操作(记录日志)如果每个系统组建都必须用 Java编写(没有人因为选用
Apache的软件被解雇)
例如:银行业,金融业(虽然对于金融交易不是必须的,但这些产业对数据库的要求会比它们更大)写比读更快,所以一个自然的特性就是实时数据分析
8. HBase
(配合 ghshephard使用)
所用语言: Java
特点:支持数十亿行X上百万列
使用许可: Apache
协议:HTTP/REST (支持 Thrift,见编注4)
在 BigTable之后建模
采用分布式架构 Map/reduce
对实时查询进行优化
高性能 Thrift网关
通过在server端扫描及过滤实现对查询操作预判
支持 XML, Protobuf, 和binary的HTTP
Cascading, hive, and pig source and sink modules
基于 Jruby( JIRB)的shell
对配置改变和较小的升级都会重新回滚
不会出现单点故障
堪比MySQL的随机访问性能
最佳应用场景:适用于偏好BigTable:)并且需要对大数据进行随机、实时访问的场合。
例如: Facebook消息数据库(更多通用的用例即将出现)
编注4:Thrift
是一种接口定义语言,为多种其他语言提供定义和创建服务,由Facebook开发并开源。
当然,所有的系统都不只具有上面列出的这些特性。这里我仅仅根据自己的观点列出一些我认为的重要特性。与此同时,技术进步是飞速的,所以上述的内容肯定需要不断更新。我会尽我所能地更新这个列表。