资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

nosql有哪些应用场景,nosql的应用

高性能 NoSQL

关系数据库经过几十年的发展,已经非常成熟,但同时也存在不足:

创新互联建站专注于蒲城企业网站建设,响应式网站开发,商城网站制作。蒲城网站建设公司,为蒲城等地区提供建站服务。全流程定制制作,专业设计,全程项目跟踪,创新互联建站专业和态度为您提供的服务

表结构是强约束的,业务变更时扩充很麻烦。

如果对大数据量的表进行统计运算,I/O会很高,因为即使只针对某列进行运算,也需要将整行数据读入内存。

全文搜索只能使用 Like 进行整表扫描,性能非常低。

针对这些不足,产生了不同的 NoSQL 解决方案,在某些场景下比关系数据库更有优势,但同时也牺牲了某些特性,所以不能片面的迷信某种方案,应将其作为 SQL 的有利补充。

NoSQL != No SQL,而是:

NoSQL = Not Only SQL

典型的 NoSQL 方案分为4类:

Redis 是典型,其 value 是具体的数据结构,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被称为数据结构服务器。

以 list 为例:

LPOP key 是移除并返回队列左边的第一个元素。

如果用关系数据库就比较麻烦了,需要操作:

Redis 的缺点主要体现在不支持完成的ACID事务,只能保证隔离性和一致性,无法保证原子性和持久性。

最大的特点是 no-schema,无需在使用前定义字段,读取一个不存在的字段也不会导致语法错误。

特点:

以电商为例,不同商品的属性差异很大,如冰箱和电脑,这种差异性在关系数据库中会有很大的麻烦,而使用文档数据库则非常方便。

文档数据库的主要缺点:

关系数据库是按行来存储的,列式数据库是按照列来存储数据。

按行存储的优势:

在某些场景下,这些优势就成为劣势了,例如,计算超重人员的数据,只需要读取体重这一列进行统计即可,但行式存储会将整行数据读取到内存中,很浪费。

而列式存储中,只需要读取体重这列的数据即可,I/O 将大大减少。

除了节省I/O,列式存储还有更高的压缩比,可以节省存储空间。普通行式数据库的压缩比在 3:1 到 5:1 左右,列式数据库在 8:1 到 30:1,因为单个列的数据相似度更高。

列式存储的随机写效率远低于行式存储,因为行式存储时同一行多个列都存储在连续空间中,而列式存储将不同列存储在不连续的空间。

一般将列式存储应用在离线大数据分析统计场景,因为这时主要针对部分列进行操作,而且数据写入后无须更新。

关系数据库通过索引进行快速查询,但在全文搜索的情景下,索引就不够了,因为:

假设有一个交友网站,信息表如下:

需要匹配性别、地点、语言列。

需要匹配性别、地点、爱好列。

实际搜索中,各种排列组合非常多,关系数据库很难支持。

全文搜索引擎是使用 倒排索引 技术,建立单词到文档的索引,例如上面的表信息建立倒排索引:

所以特别适合根据关键词来查询文档内容。

上面介绍了几种典型的NoSQL方案,及各自的适用场景和特点,您可以根据实际需求进行选择。

NoSQL详解:如何找到对的技术

NoSQL,泛指非关系型的数据库。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。

虽然关系型数据库系统RDBMS在安装和使用上仍然占有主要地位,但毋庸置疑,非关系型数据库NoSQL技术已经成为今天发展最快的数据库技术。

NoSQL详解:如何找到对的技术

NoSQL是对数据库系统的总称,在某种程度上,它的性能和用途可能完全不同。NoSQL一词最早产生于上世纪九十年代,意思是NoSQL(没有SQL语言),后来随着时间和技术的发展,SQL界面仍然作为处理数据的方式存在,所以NoSQL又有了新的诠释,即NotOnlySQL(不只是SQL语言)。今天,NoSQL数据库凭借着其非关系型、分布式、开源和横向扩展等优势,被认为是下一代数据库产品。

四种主要的NoSQL数据库和它们主要的应用场景

键值数据库:当数据以键的形式访问时,比如通过国际标准书号ISBN找一本书,键值数据库是最理想的。在这里,ISBN是键,书籍的其他信息就是值。必须知道键才能查询,不过值是一堆无意义的数据,读取之后必须经过翻译。

文档存储数据库:该数据库以文档的形式管理和存储数据。有点类似于键值数据库,但文档数据库中的数据有结构。与键值数据库中值是一堆无意义的数据不同,文档数据库中数据以文档的结构被描述,典型的是JavaScriptObjectNotation(JSON)或XML.文档存储数据库中的数据可以通过定义的任何模式进行查询,但键值数据库只能通过它的键进行查询。

常见NoSQL数据库的应用场景是怎么样的

文档数据库 源起:受Lotus Notes启发。 数据模型:包含了key-value的文档集合 例子:CouchDB, MongoDB 优点:数据模型自然,编程友好,快速开发,web友好,CRUD。 图数据库 源起: 欧拉和图理论。 数据模型:节点和关系,也可处理键值对。 例子:AllegroGraph, InfoGrid, Neo4j 优点:解决复杂的图问题。 关系数据库 源起: E. F. Codd 在A Relational Model of Data for Large Shared Data Banks提出的 数据模型:各种关系 例子:VoltDB, Clustrix, MySQL 优点:高性能、可扩展的OLTP,支持SQL,物化视图,支持事务,编程友好。 对象数据库 源起:图数据库研究 数据模型:对象 例子:Objectivity, Gemstone 优点:复杂对象模型,快速键值访问,键功能访问,以及图数据库的优点。 Key-Value数据库 源起:Amazon的论文 Dynamo 和 Distributed HashTables。 数据模型:键值对 例子:Membase, Riak 优点:处理大量数据,快速处理大量读写请求。编程友好。 BigTable类型数据库 源起:Google的论文 BigTable。 数据模型:列簇,每一行在理论上都是不同的 例子:HBase, Hypertable, Cassandra 优点:处理大量数据,应对极高写负载,高可用,支持跨数据中心, MapReduce。 数据结构服务 源起: ? 数据模型:字典操作,lists, sets和字符串值 例子:Redis 优点:不同于以前的任何数据库 网格数据库 源起:数据网格和元组空间研究。 数据模型:基于空间的架构 例子:GigaSpaces, Coherence 优点:适于事务处理的高性能和高扩展性

NoSQL应用

而传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,例如:

1、High performance - 对数据库高并发读写的需求

web2.0网站要根据用户个性化信息来实时生成动态页面和提供动态信息,所以基本上无法使用动态页面静态化技术,因此数据库并发负载非常高,往往要达到每秒上万次读写请求。关系数据库应付上万次SQL查询还勉强顶得住,但是应付上万次SQL写数据请求,硬盘IO就已经无法承受了。其实对于普通的BBS网站,往往也存在对高并发写请求的需求。

2、Huge Storage - 对海量数据的高效率存储和访问的需求

对于大型的SNS网站,每天用户产生海量的用户动态,以国外的Friendfeed为例,一个月就达到了2.5亿条用户动态,对于关系数据库来说,在一张2.5亿条记录的表里面进行SQL查询,效率是极其低下乃至不可忍受的。再例如大型web网站的用户登录系统,例如腾讯,盛大,动辄数以亿计的帐号,关系数据库也很难应付。

3、High Scalability High Availability- 对数据库的高可扩展性和高可用性的需求

在基于web的架构当中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,你的数据库却没有办法像web server和app server那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移,为什么数据库不能通过不断的添加服务器节点来实现扩展呢?

在上面提到的“三高”需求面前,关系数据库遇到了难以克服的障碍,而对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地,例如:

1、数据库事务一致性需求

很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低,有些场合对写一致性要求也不高。因此数据库事务管理成了数据库高负载下一个沉重的负担。

2、数据库的写实时性和读实时性需求

对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的,但是对于很多web应用来说,并不要求这么高的实时性。

3、对复杂的SQL查询,特别是多表关联查询的需求

任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的复杂SQL报表查询,特别是SNS类型的网站,从需求以及产品设计角度,就避免了这种情况的产生。往往更多的只是单表的主键查询,以及单表的简单条件分页查询,SQL的功能被极大的弱化了。

因此,关系数据库在这些越来越多的应用场景下显得不那么合适了,为了解决这类问题的非关系数据库应运而生。

NoSQL 是非关系型数据存储的广义定义。它打破了长久以来关系型数据库与ACID理论大一统的局面。NoSQL 数据存储不需要固定的表结构,通常也不存在连接操作。在大数据存取上具备关系型数据库无法比拟的性能优势。该术语在 2009 年初得到了广泛认同。

当今的应用体系结构需要数据存储在横向伸缩性上能够满足需求。而 NoSQL 存储就是为了实现这个需求。Google 的BigTable与Amazon的Dynamo是非常成功的商业 NoSQL 实现。一些开源的 NoSQL 体系,如Facebook 的Cassandra, Apache 的HBase,也得到了广泛认同。


网页题目:nosql有哪些应用场景,nosql的应用
本文URL:http://cdkjz.cn/article/dsgisgp.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220