资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

nosql的含义是指,数据库nosql中文意思

NoSQL是什么意思

什么是NoSQL数据库?从名称“非SQL”或“非关系型”衍生而来,这些数据库不使用类似SQL的查询语言,通常称为结构化存储。这些数据库自1960年就已经存在,但是直到现在一些大公司(例如Google和Facebook)开始使用它们时,这些数据库才流行起来。该数据库最明显的优势是摆脱了一组固定的列、连接和类似SQL的查询语言的限制。有时,NoSQL这个名称也可能表示“不仅仅SQL”,来确保它们可能支持SQL。 NoSQL数据库使用诸如键值、宽列、图形或文档之类的数据结构,并且可以如JSON之类的不同格式存储。

我们提供的服务有:成都网站制作、网站设计、外贸网站建设、微信公众号开发、网站优化、网站认证、徐闻ssl等。为近千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的徐闻网站制作公司

试述数据 数据库 数据库管理系统 数据库系统的概念以及四者之间的关系

一、数据

1、数据(data)是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经加工的原始素材。

2、数据可以是连续的值,比如声音、图像,称为模拟数据;也可以是离散的,如符号、文字,称为数字数据。

3、在计算机系统中,数据以二进制信息单元0、1的形式表示。

二、数据库

数据库是存放数据的仓库。它的存储空间很大,可以存放百万条、千万条、上亿条数据。但是数据库并不是随意地将数据进行存放,是有一定的规则的,否则查询的效率会很低。当今世界是一个充满着数据的互联网世界,充斥着大量的数据。即这个互联网世界就是数据世界。数据的来源有很多,比如出行记录、消费记录、浏览的网页、发送的消息等等。除了文本类型的数据,图像、音乐、声音都是数据。

三、数据库管理系统

1、数据库管理系统(Database Management System)是一种操纵和管理数据库的大型软件,用于建立、使用和维护数据库,简称DBMS。它对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。用户通过DBMS访问数据库中的数据,数据库管理员也通过DBMS进行数据库的维护工作。

2、它可以支持多个应用程序和用户用不同的方法在同时或不同时刻去建立,修改和询问数据库。大部分DBMS提供数据定义语言DDL(Data Definition Language)和数据操作语言DML(Data Manipulation Language),供用户定义数据库的模式结构与权限约束,实现对数据的追加、删除等操作。

四、数据库系统

数据库系统DBS(Data Base System,简称DBS)通常由软件、数据库和数据管理员组成。其软件主要包括操作系统、各种宿主语言、实用程序以及数据库管理系统。数据库由数据库管理系统统一管理,数据的插入、修改和检索均要通过数据库管理系统进行。数据管理员负责创建、监控和维护整个数据库,使数据能被任何有权使用的人有效使用。数据库管理员一般是由业务水平较高、资历较深的人员担任。

五、数据、数据库、数据库管理系统、数据库系统四者之间的关系

1、首先数据库系统(baiDBS)包括数据库(DB)和数据库管理系统(DBMS),数据库管理系统包括数据库,数据库包括数据。

2、数据库是用来存放数据的仓库。

3、数据库管理系统是操纵和管理数据库的系统。

扩展资料:

数据库的发展现状

1、在数据库的发展历史上,数据库先后经历了层次数据库、网状数据库和关系数据库等各个阶段的发展,数据库技术在各个方面的快速的发展。

2、特别是关系型数据库已经成为目前数据库产品中最重要的一员,80年代以来, 几乎所有的数据库厂商新出的数据库产品都支持关系型数据库,即使一些非关系数据库产品也几乎都有支持关系数据库的接口。这主要是传统的关系型数据库可以比较好的解决管理和存储关系型数据的问题。

3、随着云计算的发展和大数据时代的到来,关系型数据库越来越无法满足需要,这主要是由于越来越多的半关系型和非关系型数据需要用数据库进行存储管理。

4、以此同时,分布式技术等新技术的出现也对数据库的技术提出了新的要求,于是越来越多的非关系型数据库就开始出现,这类数据库与传统的关系型数据库在设计和数据结构有了很大的不同, 它们更强调数据库数据的高并发读写和存储大数据,这类数据库一般被称为NoSQL(Not only SQL)数据库。 而传统的关系型数据库在一些传统领域依然保持了强大的生命力。

如何正确理解CAP理论

常见的理解及分析

目前流行的、对CAP理论解释的情形是从同一数据在网络环境中的多个副本出发的。为了保证数据不会丢失,在企业级的数据管理方案中,一般必须考虑数据的冗余存储问题,而这应该是通过在网络上的其他独立物理存储节点上保留另一份、或多份数据副本来实现的(如附图所示)。因为在同一个存储节点上的数据冗余明显不能解决单点故障问题,这与通过多节点集群来提供更好的计算可用性的道理是相同的。

附图 CAP理论示意图

其实,不用做严格的证明也可以想见,如附图的情况,数据在节点A、B、C上保留了三份,如果对节点A上的数据进行了修改,然后再让客户端通过网络对该数据进行读取。那么,客户端的读取操作什么时候返回呢?

有这样两种情况:一种情况是要求节点A、B、C的三份数据完全一致后返回。也就是说,这时从任何一个网络节点读取的数据都是一样的,这就是所谓的强一致性读。很明显,这时数据读取的Latency要高一些(因为要等数据在网络中的复制),同时A、B、C三个节点中任何一个宕机,都会导致数据不可用。也就是说,要保证强一致性,网络中的副本越多,数据的可用性就越差;

另一种情况是,允许读操作立即返回,容忍B节点的读取与A节点的读取不一致的情况发生。这样一来,可用性显然得到了提高,网络中的副本也可以多一些,唯一得不到保证的是数据一致性。当然,对写操作同样也有多个节点一致性的情况,在此不再赘述。

可以看出,上述对CAP理论的解释主要是从网络上多个节点之间的读写一致性出发考虑问题的。而这一点,对于关系型数据库意味着什么呢?当然主要是指通常所说的Standby(关于分布式事务,涉及到更多考虑,随后讨论)情况。对此,在实践中我们大多已经采取了弱一致性的异步延时同步方案,以提高可用性。这种情况并不存在关系型数据库为保证C、A而放弃P的情况;而对海量数据管理的需求,关系型数据库扩展过程中所遇到的性能瓶颈,似乎也并不是CAP理论中所描述的那种原因造成的。那么,上述流行的说法中所描述的关系型数据库为保证C、A而牺牲P到底是在指什么呢?

因此,如果根据现有的大多数资料对CAP理论的如上解释,即只将其当作分布式系统中多个数据副本之间的读写一致性问题的通用理论对待,那么就可以得出结论:CAP既适用于NoSQL数据库,也适用于关系型数据库。它是NoSQL数据库、关系型数据库,乃至一切分布式系统在设计数据多个副本之间读写一致性问题时需要遵循的共同原则。

更深入的探究:两种重要的分布式场景

在本文中我们要说的重点与核心是:关于对CAP理论中一致性C的理解,除了上述数据副本之间的读写一致性以外,分布式环境中还有两种非常重要的场景,如果不对它们进行认识与讨论,就永远无法全面地理解CAP,当然也就无法根据CAP做出正确的解释。但可惜的是,目前为止却很少有人提及这两种场景:那就是事务与关联。

先来看看分布式环境中的事务场景。我们知道,在关系型数据库的事务操作遵循ACID原则,其中的一致性C,主要是指一个事务中相关联的数据在事务操作结束后是一致的。所谓ACID原则,是指在写入/异动资料的过程中,为保证交易正确可靠所必须具备的四个特性:即原子性(Atomicity,或称不可分割性)、一致性(Consistency)、隔离性(Isolation,又称独立性)和持久性(Durability)。

例如银行的一个存款交易事务,将导致交易流水表增加一条记录。同时,必须导致账户表余额发生变化,这两个操作必须是一个事务中全部完成,保证相关数据的一致性。而前文解释的CAP理论中的C是指对一个数据多个备份的读写一致性。表面上看,这两者不是一回事,但实际上,却是本质基本相同的事物:数据请求会等待多个相关数据操作全部完成才返回。对分布式系统来讲,这就是我们通常所说的分布式事务问题。

众所周知,分布式事务一般采用两阶段提交策略来实现,这是一个非常耗时的复杂过程,会严重影响系统效率,在实践中我们尽量避免使用它。在实践过程中,如果我们为了扩展数据容量将数据分布式存储,而事务的要求又完全不能降低。那么,系统的可用性一定会大大降低,在现实中我们一般都采用对这些数据不分散存储的策略。

当然,我们也可以说,最常使用的关系型数据库,因为这个原因,扩展性(分区可容忍性P)受到了限制,这是完全符合CAP理论的。但同时我们应该意识到,这对NoSQL数据库也是一样的。如果NoSQL数据库也要求严格的分布式事务功能,情况并不会比关系型数据库好多少。只是在NoSQL的设计中,我们往往会弱化甚至去除事务的功能,该问题才表现得不那么明显而已。

因此,在扩展性问题上,如果要说关系型数据库是为了保证C、A而牺牲P,在尽量避免分布式事务这一点上来看,应该是正确的。也就是说:关系型数据库应该具有强大的事务功能,如果分区扩展,可用性就会降低;而NoSQL数据库干脆弱化甚至去除了事务功能,因此,分区的可扩展性就大大增加了。

再来看看分布式环境中的关联场景。初看起来,关系型数据库中常用的多表关联操作与CAP理论就更加不沾边了。但仔细考虑,也可以用它来解释数据库分区扩展对关联所带来的影响。对一个数据库来讲,采用了分区扩展策略来扩充容量,数据分散存储了,很显然多表关联的性能就会下降,因为我们必须在网络上进行大量的数据迁移操作,这与CAP理论中数据副本之间的同步操作本质上也是相同的。

因此,如果要保证系统的高可用性,需要同时实现强大的多表关系操作的关系型数据库在分区可扩展性上就遇到了极大的限制(即使是那些采用了各种优秀解决方案的MPP架构的关系型数据库,如TeraData,Netezza等,其水平可扩展性也是远远不如NoSQL数据库的),而NoSQL数据库则干脆在设计上弱化甚至去除了多表关联操作。那么,从这一点上来理解“NoSQL数据库是为了保证A与P,而牺牲C”的说法,也是可以讲得通的。当然,我们应该理解,关联问题在很多情况下不是并行处理的优点所在,这在很大程度上与Amdahl定律相符合。

所以,从事务与关联的角度来关系型数据库的分区可扩展性为什么受限的原因是最为清楚的。而NoSQL数据库也正是因为弱化,甚至去除了像事务与关联(全面地讲,其实还有索引等特性)等在分布式环境中会严重影响系统可用性的功能,才获得了更好的水平可扩展性。

那么,如果将事务与关联也纳入CAP理论中一致性C的范畴的话,问题就很清楚了:关于“关系型数据库为了保证一致性C与可用性A,而不得不牺牲分区可容忍性P”的说法便是正确的了。但关于“NoSQL选择了C与P,或者A与P”的说法则是错误的,所有的NoSQL数据库在设计策略的大方向上都是选择了A与P(虽然对同一数据多个副本的读写一致性问题的设计各有不同),从来没有完全选择C与P的情况存在。

结论

现在看来,如果理解CAP理论只是指多个数据副本之间读写一致性的问题,那么它对关系型数据库与NoSQL数据库来讲是完全一样的,它只是运行在分布式环境中的数据管理设施在设计读写一致性问题时需要遵循的一个原则而已,却并不是NoSQL数据库具有优秀的水平可扩展性的真正原因。而如果将CAP理论中的一致性C理解为读写一致性、事务与关联操作的综合,则可以认为关系型数据库选择了C与A,而NoSQL数据库则全都是选择了A与P,但并没有选择C与P的情况存在。这才是用CAP理论来支持NoSQL数据库设计正确认识。

其实,这种认识正好与被广泛认同的NoSQL的另一个理论基础相吻合,即与ACID对着干的BASE(基本可用性、软状态与最终一致性)。因为BASE的含义正好是指“NoSQL数据库设计可以通过牺牲一定的数据一致性和容错性来换取高性能的保持甚至提高”,即NoSQL数据库都应该是牺牲C来换取P,而不是牺牲A。可用性A正好是所有NoSQL数据库都普遍追求的特性。

什么是nosql非结构化数据库

基本含义NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。NoSQLNoSQL数据库的四大分类键值(Key-Value)存储数据库这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。[3] 举例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.列存储数据库。这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra, HBase, Riak.文档型数据库文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可 以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。图形(Graph)数据库图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。[2] 如:Neo4J, InfoGrid, Infinite Graph.因此,我们总结NoSQL数据库在以下的这几种情况下比较适用:1、数据模型比较简单;2、需要灵活性更强的IT系统;3、对数据库性能要求较高;4、不需要高度的数据一致性;5、对于给定key,比较容易映射复杂值的环境。

NoSQL-HDFS-基本概念

Hadoop

文件系统:文件系统是用来存储和管理文件,并且提供文件的查询、增加、删除等操作。

直观上的体验:在shell窗口输入 ls 命令,就可以看到当前目录下的文件夹、文件。

文件存储在哪里?硬盘

一台只有250G硬盘的电脑,如果需要存储500G的文件可以怎么办?先将电脑硬盘扩容至少250G,再将文件分割成多块,放到多块硬盘上储存。

通过 hdfs dfs -ls 命令可以查看分布式文件系统中的文件,就像本地的ls命令一样。

HDFS在客户端上提供了查询、新增和删除的指令,可以实现将分布在多台机器上的文件系统进行统一的管理。

在分布式文件系统中,一个大文件会被切分成块,分别存储到几台机器上。结合上文中提到的那个存储500G大文件的那个例子,这500G的文件会按照一定的大小被切分成若干块,然后分别存储在若干台机器上,然后提供统一的操作接口。

看到这里,不少人可能会觉得,分布式文件系统不过如此,很简单嘛。事实真的是这样的么?

潜在问题

假如我有一个1000台机器组成的分布式系统,一台机器每天出现故障的概率是0.1%,那么整个系统每天出现故障的概率是多大呢?答案是(1-0.1%)^1000=63%,因此需要提供一个容错机制来保证发生差错时文件依然可以读出,这里暂时先不展开介绍。

如果要存储PB级或者EB级的数据,成千上万台机器组成的集群是很常见的,所以说分布式系统比单机系统要复杂得多呀。

这是一张HDFS的架构简图:

client通过nameNode了解数据在哪些DataNode上,从而发起查询。此外,不仅是查询文件,写入文件的时候也是先去请教NameNode,看看应该往哪个DateNode中去写。

为了某一份数据只写入到一个Datanode中,而这个Datanode因为某些原因出错无法读取的问题,需要通过冗余备份的方式来进行容错处理。因此,HDFS在写入一个数据块的时候,不会仅仅写入一个DataNode,而是会写入到多个DataNode中,这样,如果其中一个DataNode坏了,还可以从其余的DataNode中拿到数据,保证了数据不丢失。

实际上,每个数据块在HDFS上都会保存多份,保存在不同的DataNode上。这种是牺牲一定存储空间换取可靠性的做法。

接下来我们来看一下完整的文件写入的流程:

大文件要写入HDFS,client端根据配置将大文件分成固定大小的块,然后再上传到HDFS。

读取文件的流程:

1、client询问NameNode,我要读取某个路径下的文件,麻烦告诉我这个文件都在哪些DataNode上?

2、NameNode回复client,这个路径下的文件被切成了3块,分别在DataNode1、DataNode3和DataNode4上

3、client去找DataNode1、DataNode3和DataNode4,拿到3个文件块,通过stream读取并且整合起来

文件写入的流程:

1、client先将文件分块,然后询问NameNode,我要写入一个文件到某个路径下,文件有3块,应该怎么写?

2、NameNode回复client,可以分别写到DataNode1、DataNode2、DataNode3、DataNode4上,记住,每个块重复写3份,总共是9份

3、client找到DataNode1、DataNode2、DataNode3、DataNode4,把数据写到他们上面

出于容错的考虑,每个数据块有3个备份,但是3个备份快都直接由client端直接写入势必会带来client端过重的写入压力,这个点是否有更好的解决方案呢?回忆一下mysql主备之间是通过binlog文件进行同步的,HDFS当然也可以借鉴这个思想,数据其实只需要写入到一个datanode上,然后由datanode之间相互进行备份同步,减少了client端的写入压力,那么至于是一个datanode写入成功即成功,还是需要所有的参与备份的datanode返回写入成功才算成功,是可靠性配置的策略,当然这个设置会影响到数据写入的吞吐率,我们可以看到可靠性和效率永远是“鱼和熊掌不可兼得”的。

潜在问题

NameNode确实会回放editlog,但是不是每次都从头回放,它会先加载一个fsimage,这个文件是之前某一个时刻整个NameNode的文件元数据的内存快照,然后再在这个基础上回放editlog,完成后,会清空editlog,再把当前文件元数据的内存状态写入fsimage,方便下一次加载。

这样,全量回放就变成了增量回放,但是如果NameNode长时间未重启过,editlog依然会比较大,恢复的时间依然比较长,这个问题怎么解呢?

SecondNameNode是一个NameNode内的定时任务线程,它会定期地将editlog写入fsimage,然后情况原来的editlog,从而保证editlog的文件大小维持在一定大小。

NameNode挂了, SecondNameNode并不能替代NameNode,所以如果集群中只有一个NameNode,它挂了,整个系统就挂了。hadoop2.x之前,整个集群只能有一个NameNode,是有可能发生单点故障的,所以hadoop1.x有本身的不稳定性。但是hadoop2.x之后,我们可以在集群中配置多个NameNode,就不会有这个问题了,但是配置多个NameNode,需要注意的地方就更多了,系统就更加复杂了。

俗话说“一山不容二虎”,两个NameNode只能有一个是活跃状态active,另一个是备份状态standby,我们看一下两个NameNode的架构图。

两个NameNode通过JournalNode实现同步editlog,保持状态一致可以相互替换。

因为active的NameNode挂了之后,standby的NameNode要马上接替它,所以它们的数据要时刻保持一致,在写入数据的时候,两个NameNode内存中都要记录数据的元信息,并保持一致。这个JournalNode就是用来在两个NameNode中同步数据的,并且standby NameNode实现了SecondNameNode的功能。

进行数据同步操作的过程如下:

active NameNode有操作之后,它的editlog会被记录到JournalNode中,standby NameNode会从JournalNode中读取到变化并进行同步,同时standby NameNode会监听记录的变化。这样做的话就是实时同步了,并且standby NameNode就实现了SecondNameNode的功能。

优点:

缺点:

如何准确理解nosql的含义

用于输出指定的值:

s:property value="%{@cn.csdn.hr.domain.User@Name}"/br/

s:property value="@cn.csdn.hr.domain.User@Name"/Br/!-- 以上两种方法都可以 --

s:property value="%{@cn.csdn.hr.domain.User@study()}"/


分享名称:nosql的含义是指,数据库nosql中文意思
转载注明:http://cdkjz.cn/article/dseiiso.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220