资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python逻辑回归函数,Python 回归

python怎么实现逻辑回归的梯度下降法

import sys

洪洞网站制作公司哪家好,找创新互联建站!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设等网站项目制作,到程序开发,运营维护。创新互联建站自2013年起到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联建站

#Training data set

#each element in x represents (x0,x1,x2)

x = [(1,0.,3) , (1,1.,3) ,(1,2.,3), (1,3.,2) , (1,4.,4)]

#y[i] is the output of y = theta0 * x[0] + theta1 * x[1] +theta2 * x[2]

y = [95.364,97.217205,75.195834,60.105519,49.342380]

epsilon = 0.0001

#learning rate

alpha = 0.01

diff = [0,0]

max_itor = 1000

error1 = 0

error0 =0

cnt = 0

m = len(x)

#init the parameters to zero

theta0 = 0

theta1 = 0

theta2 = 0

while True:

cnt = cnt + 1

#calculate the parameters

for i in range(m):

diff[0] = y[i]-( theta0 + theta1 * x[i][1] + theta2 * x[i][2] )

theta0 = theta0 + alpha * diff[0] * x[i][0]

theta1 = theta1 + alpha * diff[0]* x[i][1]

theta2 = theta2 + alpha * diff[0]* x[i][2]

#calculate the cost function

error1 = 0

for lp in range(len(x)):

error1 += ( y[i]-( theta0 + theta1 * x[i][1] + theta2 * x[i][2] ) )**2/2

if abs(error1-error0) epsilon:

break

else:

error0 = error1

print ' theta0 : %f, theta1 : %f, theta2 : %f, error1 : %f'%(theta0,theta1,theta2,error1)

print 'Done: theta0 : %f, theta1 : %f, theta2 : %f'%(theta0,theta1,theta2)

python做逻辑回归 怎么把导入的数据分成x,y

简介

本例子是通过对一组逻辑回归映射进行输出,使得网络的权重和偏置达到最理想状态,最后再进行预测。其中,使用GD算法对参数进行更新,损耗函数采取交叉商来表示,一共训练10000次。

2.python代码

#!/usr/bin/python

import numpy

import theano

import theano.tensor as T

rng=numpy.random

N=400

feats=784

# D[0]:generate rand numbers of size N,element between (0,1)

# D[1]:generate rand int number of size N,0 or 1

D=(rng.randn(N,feats),rng.randint(size=N,low=0,high=2))

training_steps=10000

# declare symbolic variables

x=T.matrix('x')

y=T.vector('y')

w=theano.shared(rng.randn(feats),name='w') # w is shared for every input

b=theano.shared(0.,name='b') # b is shared too.

print('Initial model:')

print(w.get_value())

print(b.get_value())

# construct theano expressions,symbolic

p_1=1/(1+T.exp(-T.dot(x,w)-b)) # sigmoid function,probability of target being 1

prediction=p_10.5

xent=-y*T.log(p_1)-(1-y)*T.log(1-p_1) # cross entropy

cost=xent.mean()+0.01*(w**2).sum() # cost function to update parameters

gw,gb=T.grad(cost,[w,b]) # stochastic gradient descending algorithm

#compile

train=theano.function(inputs=[x,y],outputs=[prediction,xent],updates=((w,w-0.1*gw),(b,b-0.1*gb)))

predict=theano.function(inputs=[x],outputs=prediction)

# train

for i in range(training_steps):

pred,err=train(D[0],D[1])

print('Final model:')

print(w.get_value())

print(b.get_value())

print('target values for D:')

print(D[1])

print('prediction on D:')

print(predict(D[0]))

print('newly generated data for test:')

test_input=rng.randn(30,feats)

print('result:')

print(predict(test_input))

3.程序解读

如上面所示,首先导入所需的库,theano是一个用于科学计算的库。然后这里我们随机产生一个输入矩阵,大小为400*784的随机数,随机产生一个输出向量大小为400,输出向量为二值的。因此,称为逻辑回归。

然后初始化权重和偏置,它们均为共享变量(shared),其中权重初始化为较小的数,偏置初始化为0,并且打印它们。

这里我们只构建一层网络结构,使用的激活函数为logistic sigmoid function,对输入量乘以权重并考虑偏置以后就可以算出输入的激活值,该值在(0,1)之间,以0.5为界限进行二值化,然后算出交叉商和损耗函数,其中交叉商是代表了我们的激活值与实际理论值的偏离程度。接着我们使用cost分别对w,b进行求解偏导,以上均为符号表达式运算。

接着我们使用theano.function进行编译优化,提高计算效率。得到train函数和predict函数,分别进行训练和预测。

接着,我们对数据进行10000次的训练,每次训练都会按照GD算法进行更新参数,最后我们得到了想要的模型,产生一组新的输入,即可进行预测。

在逻辑回归中,odds ratio怎么用python计算?

实际上完成逻辑回归是相当简单的,首先指定要预测变量的列,接着指定模型用于做预测的列,剩下的就由算法包去完成了。

本例中要预测的是admin列,使用到gre、gpa和虚拟变量prestige_2、prestige_3、prestige_4。prestige_1作为基准,所以排除掉,以防止多元共线性(multicollinearity)和引入分类变量的所有虚拟变量值所导致的陷阱(dummy variable trap)。

程序缩进如图所示

怎么看python中逻辑回归输出的解释

以下为python代码,由于训练数据比较少,这边使用了批处理梯度下降法,没有使用增量梯度下降法。

##author:lijiayan##data:2016/10/27

##name:logReg.pyfrom numpy import *import matplotlib.pyplot as pltdef loadData(filename):

data = loadtxt(filename)

m,n = data.shape    print 'the number of  examples:',m    print 'the number of features:',n-1    x = data[:,0:n-1]

y = data[:,n-1:n]    return x,y#the sigmoid functiondef sigmoid(z):    return 1.0 / (1 + exp(-z))#the cost functiondef costfunction(y,h):

y = array(y)

h = array(h)

J = sum(y*log(h))+sum((1-y)*log(1-h))    return J# the batch gradient descent algrithmdef gradescent(x,y):

m,n = shape(x)     #m: number of training example; n: number of features    x = c_[ones(m),x]     #add x0    x = mat(x)      # to matrix    y = mat(y)

a = 0.0000025       # learning rate    maxcycle = 4000    theta = zeros((n+1,1))  #initial theta    J = []    for i in range(maxcycle):

h = sigmoid(x*theta)

theta = theta + a * (x.T)*(y-h)

cost = costfunction(y,h)

J.append(cost)

plt.plot(J)

plt.show()    return theta,cost#the stochastic gradient descent (m should be large,if you want the result is good)def stocGraddescent(x,y):

m,n = shape(x)     #m: number of training example; n: number of features    x = c_[ones(m),x]     #add x0    x = mat(x)      # to matrix    y = mat(y)

a = 0.01       # learning rate    theta = ones((n+1,1))    #initial theta    J = []    for i in range(m):

h = sigmoid(x[i]*theta)

theta = theta + a * x[i].transpose()*(y[i]-h)

cost = costfunction(y,h)

J.append(cost)

plt.plot(J)

plt.show()    return theta,cost#plot the decision boundarydef plotbestfit(x,y,theta):

plt.plot(x[:,0:1][where(y==1)],x[:,1:2][where(y==1)],'ro')

plt.plot(x[:,0:1][where(y!=1)],x[:,1:2][where(y!=1)],'bx')

x1= arange(-4,4,0.1)

x2 =(-float(theta[0])-float(theta[1])*x1) /float(theta[2])

plt.plot(x1,x2)

plt.xlabel('x1')

plt.ylabel(('x2'))

plt.show()def classifyVector(inX,theta):

prob = sigmoid((inX*theta).sum(1))    return where(prob = 0.5, 1, 0)def accuracy(x, y, theta):

m = shape(y)[0]

x = c_[ones(m),x]

y_p = classifyVector(x,theta)

accuracy = sum(y_p==y)/float(m)    return accuracy

调用上面代码:

from logReg import *

x,y = loadData("horseColicTraining.txt")

theta,cost = gradescent(x,y)print 'J:',cost

ac_train = accuracy(x, y, theta)print 'accuracy of the training examples:', ac_train

x_test,y_test = loadData('horseColicTest.txt')

ac_test = accuracy(x_test, y_test, theta)print 'accuracy of the test examples:', ac_test

学习速率=0.0000025,迭代次数=4000时的结果:

似然函数走势(J = sum(y*log(h))+sum((1-y)*log(1-h))),似然函数是求最大值,一般是要稳定了才算最好。

下图为计算结果,可以看到训练集的准确率为73%,测试集的准确率为78%。

这个时候,我去看了一下数据集,发现没个特征的数量级不一致,于是我想到要进行归一化处理:

归一化处理句修改列loadData(filename)函数:

def loadData(filename):

data = loadtxt(filename)

m,n = data.shape    print 'the number of  examples:',m    print 'the number of features:',n-1    x = data[:,0:n-1]

max = x.max(0)

min = x.min(0)

x = (x - min)/((max-min)*1.0)     #scaling    y = data[:,n-1:n]    return x,y

在没有归一化的时候,我的学习速率取了0.0000025(加大就会震荡,因为有些特征的值很大,学习速率取的稍大,波动就很大),由于学习速率小,迭代了4000次也没有完全稳定。现在当把特征归一化后(所有特征的值都在0~1之间),这样学习速率可以加大,迭代次数就可以大大减少,以下是学习速率=0.005,迭代次数=500的结果:

此时的训练集的准确率为72%,测试集的准确率为73%

从上面这个例子,我们可以看到对特征进行归一化操作的重要性。


网站题目:python逻辑回归函数,Python 回归
网站路径:http://cdkjz.cn/article/dseepci.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220