资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

Python中k均值聚类的示例分析-创新互联

这篇文章将为大家详细讲解有关Python中k均值聚类的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

创新互联建站专注于滦平网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供滦平营销型网站建设,滦平网站制作、滦平网页设计、滦平网站官网定制、小程序设计服务,打造滦平网络公司原创品牌,更为您提供滦平网站排名全网营销落地服务。

一.k-means算法

人以类聚,物以群分,k-means聚类算法就是体现。数学公式不要,直接用白话描述的步骤就是:

1.随机选取k个质心(k值取决于你想聚成几类)
2.计算样本到质心的距离,距离质心距离近的归为一类,分为k类
3.求出分类后的每类的新质心
4.判断新旧质心是否相同,如果相同就代表已经聚类成功,如果没有就循环2-3直到相同

用程序的语言描述就是:

1.输入样本
2.随机去k个质心
3.重复下面过程知道算法收敛:

计算样本到质心距离(欧几里得距离)
样本距离哪个质心近,就记为那一类
计算每个类别的新质心(平均值)

二.需求分析

数据来源:从国际统计局down的数据,数据为城乡居民家庭人均收入及恩格尔系数(点击这里下载)

Python中k均值聚类的示例分析

数据描述:

1.横轴:城镇居民家庭人均可支配收入和农村居民家庭人均纯收入,
2.纵轴:1996-2012年。
3.数据为年度数据

需求说明:我想把这数据做个聚类分析,看人民的收入大概经历几个阶段(感觉我好高大上啊)

需求分析:

1.由于样本数据有限,就两列,用k-means聚类有很大的准确性
2.用文本的形式导入数据,结果输出聚类后的质心,这样就能看出人民的收入经历了哪几个阶段

三.Python实现

引入numpy模块,借用其中的一些方法进行数据处理,上代码:

# -*- coding=utf-8 -*-

"""
authon:xuwf
created:2017-02-07
purpose:实现k-means算法
"""

import numpy as np
import random

'''装载数据'''
def load():
 data=np.loadtxt('data\k-means.csv',delimiter=',')
 return data

'''计算距离'''
def calcDis(data,clu,k):
 clalist=[] #存放计算距离后的list
 data=data.tolist() #转化为列表
 clu=clu.tolist()
 for i in range(len(data)):
  clalist.append([])
  for j in range(k):
   dist=round(((data[i][1]-clu[j][0])**2+(data[i][2]-clu[j][1])**2)*0.05,1)
   clalist[i].append(dist)
 clalist=np.array(clalist) #转化为数组
 return clalist

'''分组'''
def group(data,clalist,k):
 grouplist=[] #存放分组后的集群
 claList=clalist.tolist()
 data=data.tolist()
 for i in range(k):
  #确定要分组的个数,以空列表的形式,方便下面进行数据的插入
  grouplist.append([])
 for j in range(len(clalist)):
  sortNum=np.argsort(clalist[j])
  grouplist[sortNum[0]].append(data[j][1:])
 grouplist=np.array(grouplist)
 return grouplist

'''计算质心'''
def calcCen(data,grouplist,k):
 clunew=[]
 data=data.tolist()
 grouplist=grouplist.tolist()
 templist=[]
 #templist=np.array(templist)
 for i in range(k):
  #计算每个组的新质心
  sumx=0
  sumy=0
  for j in range(len(grouplist[i])):
   sumx+=grouplist[i][j][0]
   sumy+=grouplist[i][j][1]
  clunew.append([round(sumx/len(grouplist[i]),1),round(sumy/len(grouplist[i]),1)])
 clunew=np.array(clunew)
 #clunew=np.mean(grouplist,axis=1)
 return clunew

'''优化质心'''
def classify(data,clu,k):
 clalist=calcDis(data,clu,k) #计算样本到质心的距离
 grouplist=group(data,clalist,k) #分组
 for i in range(k):
  #替换空值
  if grouplist[i]==[]:
   grouplist[i]=[4838.9,1926.1]
 clunew=calcCen(data,grouplist,k)
 sse=clunew-clu
 #print "the clu is :%r\nthe group is :%r\nthe clunew is :%r\nthe sse is :%r" %(clu,grouplist,clunew,sse)
 return sse,clunew,data,k 

if __name__=='__main__':
 k=3 #给出要分类的个数的k值
 data=load() #装载数据
 clu=random.sample(data[:,1:].tolist(),k) #随机取质心
 clu=np.array(clu)
 sse,clunew,data,k=classify(data,clu,k)
 while np.any(sse!=0):
  sse,clunew,data,k=classify(data,clunew,k)
 clunew=np.sort(clunew,axis=0)
 print "the best cluster is %r" %clunew

四.测试

直接运行程序就可以,k值可以自己设置,会发现k=3的时候结果数据是最稳定的,这里我就不贴图了
需要注意的是上面的代码里面主函数里的数据结构都是array,但是在每个小函数里就有可能转化成了list,主要原因是需要进行array的一下方法进行计算,而转化为list的原因是需要向数组中插入数据,但是array做不到啊(至少我没找到怎么做)。于是这里就出现了一个问题,那就是数据结构混乱,到最后我调试了半天,干脆将主函数的数据结构都转化成array,在小函数中输入的array,输出的时候也转化成了array,这样就清晰多了

五.算法分析

单看这个算法还是较好理解的,但是算法的目的是聚类,那就要考虑到聚类的准确性,这里聚类的准确性取决于k值、初始质心和距离的计算方式。

  • k值就要看个人经验和多次试验了,算法结果在哪个k值的时候更稳定就证明这个分类更加具有可信度,其中算法结果的稳定也取决于初始质心的选择

  • 初始质心一般都是随机选取的,怎么更准确的选择初始质心呢?有种较难实现的方法是将样本中所有点组合起来都取一遍,然后计算算法收敛后的所有质心到样本的距离之和,哪个距离最小,哪个的聚类就最为成功,相对应的初始质心就选取的最为准确。但是这种方法有很大的计算量,如果样本很大,维度很多,那就是让电脑干到死的节奏

  • 距离的计算方式取决于样本的特征,有很多的选择,入欧式距离,夹角余弦距离,曼哈顿距离等,具体的数据特性用具体的距离计算方式

六.项目评测

1.项目总结数据源的数据很干净,不需要进行过多的数据清洗和数据降噪,数据预处理的工作成本接近为0。需求基本实现
2.还能做什么:可以用计算最小距离之和的方法求出最佳k值,这样就可以得到稳定的收入阶梯;可以引入画图模块,将数据结果进行数据可视化,显得更加直观;如果可能应该引入更多的维度或更多的数据,这样得到的聚类才更有说服力。

关于“Python中k均值聚类的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


新闻标题:Python中k均值聚类的示例分析-创新互联
网页链接:http://cdkjz.cn/article/dsdpic.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220