这篇文章将为大家详细讲解有关python如何实现画出e指数函数的图像,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
创新互联公司专注于义安网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供义安营销型网站建设,义安网站制作、义安网页设计、义安网站官网定制、小程序设计服务,打造义安网络公司原创品牌,更为您提供义安网站排名全网营销落地服务。这里用Python逼近函数y = exp(x);同样使用泰勒函数去逼近:
exp(x) = 1 + x + (x)^2/(2!) + .. + (x)^n/(n!) + ...
#!/usr/bin/python # -*- coding:utf-8 -*- import numpy as np import math import matplotlib as mpl import matplotlib.pyplot as plt def calc_e_small(x): n = 10 f = np.arange(1, n+1).cumprod() b = np.array([x]*n).cumprod() return np.sum(b / f) + 1 def calc_e(x): reverse = False if x < 0: # 处理负数 x = -x reverse = True ln2 = 0.69314718055994530941723212145818 c = x / ln2 a = int(c+0.5) b = x - a*ln2 y = (2 ** a) * calc_e_small(b) if reverse: return 1/y return y if __name__ == "__main__": t1 = np.linspace(-2, 0, 10, endpoint=False) t2 = np.linspace(0, 3, 20) t = np.concatenate((t1, t2)) print(t) # 横轴数据 y = np.empty_like(t) for i, x in enumerate(t): y[i] = calc_e(x) print('e^', x, ' = ', y[i], '(近似值)\t', math.exp(x), '(真实值)') # print '误差:', y[i] - math.exp(x) plt.figure(facecolor='w') mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False plt.plot(t, y, 'r-', t, y, 'go', linewidth=2) plt.title(u'Taylor展式的应用 - 指数函数', fontsize=18) plt.xlabel('X', fontsize=15) plt.ylabel('exp(X)', fontsize=15) plt.grid(True) plt.show()
关于“python如何实现画出e指数函数的图像”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。