资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

最早的nosql,最早的人类

为什么要使用NoSQL

NoSQL被我们用得最多的当数key-value存储,当然还有其他的文档型的、列存储、图型数据库、xml数据库等。在NoSQL概念提出之前,这些数据库就被用于各种系统当中,但是却很少用于web互联网应用。比如cdb、qdbm、bdb数据库。

我们提供的服务有:网站设计、成都网站设计、微信公众号开发、网站优化、网站认证、江安ssl等。为上1000+企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的江安网站制作公司

随着web2.0的快速发展,非关系型、分布式数据存储得到了快速的发展,它们不保证关系数据的ACID特性。NoSQL概念在2009年被提了出来。NoSQL最常见的解释是“non-relational”,“Not Only SQL”也被很多人接受。(“NoSQL”一词最早于1998年被用于一个轻量级的关系数据库的名字。)

易扩展   NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能 NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query

Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

Apache Cassandra数据库的优缺点有哪些

Apache Cassandra数据库的优缺点有哪些?

本文将超越众所周知的一些细节,探讨与 Cassandra 相关的不太明显的细节。您将检查 Cassandra 数据模型、存储模式设计、架构,以及与 Cassandra 相关的潜在惊喜。

在数据库历史文章 “What Goes Around Comes Around”中,Michal Stonebraker 详细描述了存储技术是如何随着时间的推移而发展的。实现关系模型之前,开发人员曾尝试过其他模型,比如层次图和有向图。值得注意的是,基于 SQL 的关系模型(即使到现在也仍然是事实上的标准)已经盛行了大约 30 年。鉴于计算机科学的短暂历史及其快速发展的步伐,这是一项非凡的成就。关系模型建立已久,以至于许多年来,解决方案架构师很容易为应用程序选择数据存储。他们的选择总是关系数据库。

诸如增加系统、移动设备、扩展的用户在线状态、云计算和多核系统的用户群之类的开发已经导致产生越来越多的大型系统。Google 和 Amazon 之类的高科技公司都是首批触及规模问题的公司。他们很快就发现关系数据库并不足以支持大型系统。

为了避免这些挑战,Google 和 Amazon 提出了两个可供选择的解决方案:Big Table 和 Dynamo,他们可以由此放松关系数据模型提供的保证,从而实现更高的可扩展性。Eric Brewer 的 “CAP Theorem”后来官方化了这些观察结果。它宣称,对于可扩展性系统,一致性、可用性和分区容错性都是权衡因素,因为根本不可能构建包含所有这些属性的系统。不久之后,根据 Google 和 Amazon 早期的工作,以及所获得的对可扩展性系统的理解,计划创建一种新的存储系统。这些系统被命名为 “NoSQL” 系统。该名称最初的意思是 “如果想缩放就不要使用 SQL”,后来被重新定义为 “不只是 SQL”,意思是说,除了基于 SQL 的解决方案外,还有其他的解决方案。

有许多 NoSQL 系统,而且每一个系统都缓和或改变了关系模型的某些方面。值得注意的是,没有一个 NoSQL 解决方案适用于所有的场景。每一个解决方案都优于关系模型,且针对一些用例子集进行了缩放。我的早期文章 “在 Data Storage Haystack 中为您的应用程序寻找正确的数据解决方案” 讨论了如何使应用程序需求和 NoSQL 解决方案相匹配。

Apache Cassandra是其中一个最早也是最广泛使用的 NoSQL 解决方案。本文详细介绍了 Cassandra,并指出了一些首次使用 Cassandra 时不容易发现的细节和复杂之处。

Apache Cassandra

Cassandra 是一个 NoSQL 列族 (column family) 实现,使用由 Amazon Dynamo 引入的架构方面的特性来支持 Big Table 数据模型。Cassandra 的一些优势如下所示:

高度可扩展性和高度可用性,没有单点故障

NoSQL 列族实现

非常高的写入吞吐量和良好的读取吞吐量

类似 SQL 的查询语言(从 0.8 起),并通过二级索引支持搜索

可调节的一致性和对复制的支持

灵活的模式

这些优点很容易让人们推荐使用 Cassandra,但是,对于开发人员来说,至关重要的一点是要深入探究 Cassandra 的细节和复杂之处,从而掌握该程序的复杂性。

什么是列?

列 有点用词不当,使用名称单元格 很可能更容易理解一些。我会坚持使用列,因为这是一种习惯用法。

Cassandra 数据模型包括列、行、列族和密钥空间 (keyspace)。让我们逐一进行详细介绍它们。

•列:Cassandra 数据模型中最基本的单元,每一个列包括一个名称、一个值和一个时间戳。在本文的讨论中,我们忽略了时间戳,您可以将一个列表示为一个名称值对(例如 author="Asimov")。

•行:用一个名称标记的列的集合。例如,清单 1 显示了如何表示一个行:

清单 1. 行的示例

"Second Foundation"- {

author="Asimov",

publishedDate="..",

tag1="sci-fi", tag2="Asimov"

}

Cassandra 包括许多存储节点,并且在单个存储节点内存储每一个行。在每一行内,Cassandra 总是存储按照列名称排序的列。使用这种排序顺序,Cassandra 支持切片查询,在该查询中,给定了一个行,用户可以检索属于给定的列名称范围内的列的子集。例如,范围 tag0 到 tag9999 内的切片查询会获得所有名称范围在 tag0 和 tag9999 内的列。

•列族:用一个名称标记的行的集合。清单 2 显示了样例数据的可能形式:

清单 2. 列族示例

Books-{

"Foundation"-{author="Asimov", publishedDate=".."},

"Second Foundation"-{author="Asimov", publishedDate=".."},

}

人们常说列族就像是关系模型中的一个表格。如下例所示,相似点将不复存在。

•密钥空间:许多列族共同形成的一个组。它只是列族的一个逻辑组合,并为名称提供独立的范围。

最后,超级列位于一个列族中,该列族对一个密钥下的多个列进行分组。正如开发人员不赞成使用超级列一样,在此,我对此也不作任何讨论。

Cassandra 与 RDBMS 数据模型

根据以上对 Cassandra 数据模型的描述,数据被放入每一个列族的二维 (2D) 空间中。要想在列族中检索数据,用户需要两个密钥:行名称和列名称。从这个意义上来说,尽管还存在多处至关重要的差异,关系模型和 Cassandra 仍然非常相似。

•关系列均匀分布在表中的所有行之间。数据项之间通常有明显的纵向关系,但这种情况并不适用于 Cassandra 列。这就是 Cassandra 使用各个数据项(列)来存储列名称的原因。

•有了关系模型,2D 数据空间就完整了。2D 空间内的每一个点至少应当拥有存储在此处的 null 值。另外,这种情况不适用于 Cassandra,Cassandra 可以拥有只包括少数项的行,而其他行可以拥有数百万个项。

•有了关系模型,就可以对模式进行预定义,而且在运行时不可以更改模式,而 Cassandra 允许用户在运行时更改模式。

•Cassandra 始终存储数据,这样就可以根据其名称对列进行排序。这使得使用切片查询在列中搜索数据变得很容易,但在行中搜索数据变得很困难,除非您使用的是保序分区程序。

•另一个重要差异是,RDMBS 中的列名称表示与数据有关的元数据,但绝不是数据。而在 Cassandra 中,列名称可以包括数据。因此,Cassandra 行可以拥有数百万个列,而关系模型通常只有数十个列。

•关系模型使用定义良好的不可变模式来支持复杂的查询,这些查询中包括 JOIN 和聚合等。使用关系模型,用户无需担心查询就可定义数据模式。Cassandra 不支持 JOIN 和大多数 SQL 搜索方法。因此,模式必须满足应用程序的查询要求。

为什么要使用NoSQL?NOSQL的优势

这次的NoSQL专栏系列将先整体介绍NoSQL,然后介绍如何把NoSQL运用到自己的项目中合适的场景中,还会适当地分析一些成功案例,希望有成功使用NoSQL经验的朋友给我提供一些线索和信息。

NoSQL概念随着web2.0的快速发展,非关系型、分布式数据存储得到了快速的发展,它们不保证关系数据的ACID特性。NoSQL概念在2009年被提了出来。NoSQL最常见的解释是“non-relational”,“Not Only SQL”也被很多人接受。(“NoSQL”一词最早于1998年被用于一个轻量级的关系数据库的名字。)

NoSQL被我们用得最多的当数key-value存储,当然还有其他的文档型的、列存储、图型数据库、xml数据库等。在NoSQL概念提出之前,这些数据库就被用于各种系统当中,但是却很少用于web互联网应用。比如cdb、qdbm、bdb数据库。

传统关系数据库的瓶颈

传统的关系数据库具有不错的性能,高稳定型,久经历史考验,而且使用简单,功能强大,同时也积累了大量的成功案例。在互联网领域,MySQL成为了绝对靠前的王者,毫不夸张的说,MySQL为互联网的发展做出了卓越的贡献。

在90年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付。在那个时候,更多的都是静态网页,动态交互类型的网站不多。

到了最近10年,网站开始快速发展。火爆的论坛、博客、sns、微博逐渐引领web领域的潮流。在初期,论坛的流量其实也不大,如果你接触网络比较早,你可能还记得那个时候还有文本型存储的论坛程序,可以想象一般的论坛的流量有多大。

Memcached+MySQL

后来,随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都开始出现了性能问题,web程序不再仅仅专注在功能上,同时也在追求性能。程序员们开始大量的使用缓存技术来缓解数据库的压力,优化数据库的结构和索引。开始比较流行的是通过文件缓存来缓解数据库压力,但是当访问量继续增大的时候,多台web机器通过文件缓存不能共享,大量的小文件缓存也带了了比较高的IO压力。在这个时候,Memcached就自然的成为一个非常时尚的技术产品。

Memcached作为一个独立的分布式的缓存服务器,为多个web服务器提供了一个共享的高性能缓存服务,在Memcached服务器上,又发展了根据hash算法来进行多台Memcached缓存服务的扩展,然后又出现了一致性hash来解决增加或减少缓存服务器导致重新hash带来的大量缓存失效的弊端。当时,如果你去面试,你说你有Memcached经验,肯定会加分的。

Mysql主从读写分离

由于数据库的写入压力增加,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql的master-slave模式成为这个时候的网站标配了。

分表分库随着web2.0的继续高速发展,在Memcached的高速缓存,MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。同时,开始流行使用分表分库来缓解写压力和数据增长的扩展问题。这个时候,分表分库成了一个热门技术,是面试的热门问题也是业界讨论的热门技术问题。也就在这个时候,MySQL推出了还不太稳定的表分区,这也给技术实力一般的公司带来了希望。虽然MySQL推出了MySQL Cluster集群,但是由于在互联网几乎没有成功案例,性能也不能满足互联网的要求,只是在高可靠性上提供了非常大的保证。

MySQL的扩展性瓶颈

在互联网,大部分的MySQL都应该是IO密集型的,事实上,如果你的MySQL是个CPU密集型的话,那么很可能你的MySQL设计得有性能问题,需要优化了。大数据量高并发环境下的MySQL应用开发越来越复杂,也越来越具有技术挑战性。分表分库的规则把握都是需要经验的。虽然有像淘宝这样技术实力强大的公司开发了透明的中间件层来屏蔽开发者的复杂性,但是避免不了整个架构的复杂性。分库分表的子库到一定阶段又面临扩展问题。还有就是需求的变更,可能又需要一种新的分库方式。

MySQL数据库也经常存储一些大文本字段,导致数据库表非常的大,在做数据库恢复的时候就导致非常的慢,不容易快速恢复数据库。比如1000万4KB大小的文本就接近40GB的大小,如果能把这些数据从MySQL省去,MySQL将变得非常的小。

关系数据库很强大,但是它并不能很好的应付所有的应用场景。MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难,正是当前使用MySQL的开发人员面临的问题。

NOSQL的优势易扩展NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能

NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

灵活的数据模型

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。

高可用NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。

总结NoSQL数据库的出现,弥补了关系数据(比如MySQL)在某些方面的不足,在某些方面能极大的节省开发成本和维护成本。

MySQL和NoSQL都有各自的特点和使用的应用场景,两者的紧密结合将会给web2.0的数据库发展带来新的思路。

大数据中的商业智能以及非关系型数据库

就目前而言,大数据涉及到了很多技术,这些技术都是能够帮助大家更好地去理解大数据的相关知识,在这篇文章中我们重点为大家介绍一下商业智能和非关系型数据库,希望通过我们的介绍能够让大家真正了解这些关于大数据的知识。

1.商业智能

商业智能一般被叫做BI,即Business Intelligence的缩写,商业智能是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。。当时将商业智能定义为一类由数据仓库、查询报表、数据分析、数据挖掘、数据备份和恢复等部分组成的、以帮助企业决策为目的技术及其应用。为了将数据转化为知识,需要利用数据仓库、联机分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是数据仓库、OLAP和数据挖掘等技术的综合运用。由此可见,有关大数据的词汇之间都是有一定的联系的。

2.如何看待商业智能?

把商业智能看成一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取、转换和装载,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理,最后将知识呈现给管理者,为管理者的决策过程提供数据支持。这也是商业智能为什么火热的原因。

3.非关系型数据库

非关系型数据库,简称NoSQL。我们通过百度百科上面得知NoSQL最早出现于1998 年,是由Carlo Storzzi最早开发的个轻量、开源、不兼容SQL 功能的关系型数据库,2009 年,在一次分布式开源数据库的讨论会上,再次提出了NOSQL 的概念,此时NOSQL主要是指I非关系型、分布式、不提供ACID (数据库事务处理的四个本要素)的数据库设计模式。很多数据科学家对NOSQL 最普遍的定义是“非关联型的”,强调Key-Value存储和文档数据库的优点,至此,NoSQL 开始正式出现在世人面前。

在这篇文章中我们给大家介绍了关于商业智能以及非关系型数据库的知识,上述提到的内容都是需要我们去学习和熟悉的内容,如果真的打算大数据行业的朋友一定要认真学起来 哟!


分享文章:最早的nosql,最早的人类
标题网址:http://cdkjz.cn/article/dsdhcie.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220