mysql底层架构分为:
创新互联是一家专注于成都做网站、成都网站建设与策划设计,金东网站建设哪家好?创新互联做网站,专注于网站建设十多年,网设计领域的专业建站公司;建站业务涵盖:金东等地区。金东做网站价格咨询:13518219792
1、client(客户端)
2、server(服务端)
client: 主要有各种plugin、jdbc等
server: 包含了连接器、查询缓存、分析器、优化器、执行器、存储引擎
连接器 的主要作用是与 客户端 建立联系,管理客户端的连接、会话、权限验证等。
查询缓存 的作用是,在sql通过连接器之后到达服务端之后,如果sql是sel开头的语句,那么先在 查询缓存 中获取命中结果,如果有命中结果则直接返回结果。没有结果那么sql会通往 分析器 。
分析器 拿到sql后,会对sql进行词法、语法分析,同时创建sql Id,如果sql有错误,那么将会终止sql行为,将异常返回客户端。
优化器 的作用主要是对通过 分析器 的sql进行优化,比如进行 索引选择 、 重写查询 等,同时会创建 sql执行计划 ,可以通过 explain 指令进行查看。
执行器 拿到了经过优化器的sql,将会操作 存储引擎 ,通过调用 存储引擎 提供的读写接口,得到返回结果。
存储引擎 是sql的最终执行者,它对外提供了读写接口,本身主要作用为执行sql、存储数据、获取数据等, 存储引擎 的设计是插件形式实现的,常见了有 InnoDB 、 MyISAM 等。
未完待续......
参考:
图中是两组分片,红色我们称为shard1,蓝色我们称为shard2
51 52是服务器
两个3307互为主从(双主),3309是本地3307的从库
说明:没有明确说明是只在某一个节点上做的,就是两个节点都做
两台虚拟机 db01 db02
每台创建四个mysql实例:3307 3308 3309 3310
mysql软件我们之前已完成二进制安装,直接初始化即可
我们server-id规划为:db01上是7/8/9/10,db02上是17/18/19/20
"箭头指向谁是主库"
10.0.0.51:3307 ----- 10.0.0.52:3307
10.0.0.51:3309 ------ 10.0.0.51:3307
10.0.0.52:3309 ------ 10.0.0.52:3307
两个分片,每个分片四个mysql节点
shard1:
Master:10.0.0.51:3307
slave1:10.0.0.51:3309
Standby Master:10.0.0.52:3307
slave2:10.0.0.52:3309
shard2:
Master:10.0.0.52:3308
slave1:10.0.0.52:3310
Standby Master:10.0.0.51:3308
slave2:10.0.0.51:3310
shard1
10.0.0.51:3307 ----- 10.0.0.52:3307
db02
db01
db02
10.0.0.51:3309 ------ 10.0.0.51:3307
db01
10.0.0.52:3309 ------ 10.0.0.52:3307
db02
shard2
10.0.0.52:3308 ----- 10.0.0.51:3308
db01
db02
db01
10.0.0.52:3310 ----- 10.0.0.52:3308
db02
10.0.0.51:3310 ----- 10.0.0.51:3308
db01
这个复制用户在谁上建都行
注:如果中间出现错误,在每个节点进行执行以下命令
常见方案:
360 Atlas-Sharding 360
Alibaba cobar 阿里
Mycat 开源
TDDL 淘宝
Heisenberg 百度
Oceanus 58同城
Vitess 谷歌
OneProxy
DRDS 阿里云
我们装的是openjdk,不是官方的那个
Mycat-server-xxxxx.linux.tar.gz
配置环境变量
我们mycat的命令也是在bin目录下
启动
8066就是对外提供服务的端口,9066是管理端口
连接mycat:
默认123456
db01:
我们一般先把原schema.xml备份,然后自己新写一个:
xml和html看起来差不多,xml是从下往上调用的
前三行我们不用看,直接从第四行schema开始看起:
定义了schema,然后以/schema结尾
为什么要用逻辑库?
业务透明化
此配置文件就是实现读写分离的配置
重启mycat
读写分离测试
总结:
以上案例实现了1主1从的读写分离功能,写操作落到主库,读操作落到从库.如果主库宕机,从库不能在继续提供服务了。
我们推荐这种架构
一写三读,
不设置双写的原因是:性能没提升多少,反而引起主键冲突的情况
配置文件:
之后重启:mycat restart
真正的 writehost:负责写操作的writehost
standby writeHost :和readhost一样,只提供读服务
我们此处写了两个writehost,默认使用第一个
当写节点宕机后,后面跟的readhost也不提供服务,这时候standby的writehost就提供写服务,
后面跟的readhost提供读服务
测试:
读写分离测试
对db01 3307节点进行关闭和启动,测试读写操作
结果应为另一台(52)的3307(17)是写,3309(19)是读
一旦7号节点恢复,此时因为7落后了,写节点仍是17
balance属性
负载均衡类型,目前的取值有3种:
writeType属性
负载均衡类型,目前的取值有2种:
switchType属性
-1 表示不自动切换
1 默认值,自动切换
2 基于MySQL主从同步的状态决定是否切换 ,心跳语句为 show slave status
datahost其他配置
dataHost name="localhost1" maxCon="1000" minCon="10" balance="1" writeType="0" dbType="mysql" dbDriver="native" switchType="1"
maxCon="1000":最大的并发连接数
minCon="10" :mycat在启动之后,会在后端节点上自动开启的连接线程,长连接,好处是连接速度快,弊端是占内存
tempReadHostAvailable="1"
这个一主一从时(1个writehost,1个readhost时),可以开启这个参数,如果2个writehost,2个readhost时
heartbeatselect user()/heartbeat 监测心跳
其他参数sqlMaxLimit自动分页,必须在启用分表的情况下才生效
创建测试库和表:
我们重启mycat后连接到8066
发现跟一个库一样,实际上已经分到不同的物理硬件上了
分片:对一个"bigtable",比如说t3表
热点数据表 核心表
(1)行数非常多,800w下坡
(2)访问非常频繁
分片的目的:
(1)将大数据量进行分布存储
(2)提供均衡的访问路由
分片策略:
范围 range 800w 1-400w 400w01-800w 不适用于业务访问不均匀的情况
取模 mod (取余数) 和节点的数量进行取模
枚举 按枚举的种类分,如移动项目按省份分
哈希 hash
时间 流水
优化关联查询(否则join的表在不同分片上,效率会比单库还要低)
全局表
ER分片
案例:移动统一:先拆出边缘业务,再按地域分片,但对应用来说是统一的
vim rule.xml
tableRule name="auto-sharding-long"
rule
columnsid/columns
algorithmrang-long/algorithm
/rule
function name="rang-long"
class="io.mycat.route.function.AutoPartitionByLong"
property name="mapFile"autopartition-long.txt/property
/function
===================================
vim autopartition-long.txt
0-10=0
11-20=1
创建测试表:
mysql -S /data/3307/mysql.sock -e "use taobao;create table t3 (id int not null primary key auto_increment,name varchar(20) not null);"
mysql -S /data/3308/mysql.sock -e "use taobao;create table t3 (id int not null primary key auto_increment,name varchar(20) not null);"
测试:
重启mycat
mycat restart
mysql -uroot -p123456 -h 127.0.0.1 -P 8066
insert into t3(id,name) values(1,'a');
insert into t3(id,name) values(2,'b');
insert into t3(id,name) values(3,'c');
insert into t3(id,name) values(4,'d');
insert into t3(id,name) values(11,'aa');
insert into t3(id,name) values(12,'bb');
insert into t3(id,name) values(13,'cc');
insert into t3(id,name) values(14,'dd');
取余分片方式:分片键(一个列)与节点数量进行取余,得到余数,将数据写入对应节点
vim schema.xml
table name="t4" dataNode="sh1,sh2" rule="mod-long" /
vim rule.xml
property name="count"2/property
准备测试环境
创建测试表:
mysql -S /data/3307/mysql.sock -e "use taobao;create table t4 (id int not null primary key auto_increment,name varchar(20) not null);"
mysql -S /data/3308/mysql.sock -e "use taobao;create table t4 (id int not null primary key auto_increment,name varchar(20) not null);"
重启mycat
mycat restart
测试:
mysql -uroot -p123456 -h10.0.0.52 -P8066
use TESTDB
insert into t4(id,name) values(1,'a');
insert into t4(id,name) values(2,'b');
insert into t4(id,name) values(3,'c');
insert into t4(id,name) values(4,'d');
分别登录后端节点查询数据
mysql -S /data/3307/mysql.sock
use taobao
select * from t4;
mysql -S /data/3308/mysql.sock
use taobao
select * from t4;
t5 表
id name telnum
1 bj 1212
2 sh 22222
3 bj 3333
4 sh 44444
5 bj 5555
sharding-by-intfile
vim schema.xml
table name="t5" dataNode="sh1,sh2" rule="sharding-by-intfile" /
vim rule.xml
tableRule name="sharding-by-intfile"
rule columnsname/columns
algorithmhash-int/algorithm
/rule
/tableRule
function name="hash-int" class="org.opencloudb.route.function.PartitionByFileMap"
property name="mapFile"partition-hash-int.txt/property
property name="type"1/property
property name="defaultNode"0/property
/function
partition-hash-int.txt 配置:
bj=0
sh=1
DEFAULT_NODE=1
columns 标识将要分片的表字段,algorithm 分片函数, 其中分片函数配置中,mapFile标识配置文件名称
准备测试环境
mysql -S /data/3307/mysql.sock -e "use taobao;create table t5 (id int not null primary key auto_increment,name varchar(20) not null);"
mysql -S /data/3308/mysql.sock -e "use taobao;create table t5 (id int not null primary key auto_increment,name varchar(20) not null);"
重启mycat
mycat restart
mysql -uroot -p123456 -h10.0.0.51 -P8066
use TESTDB
insert into t5(id,name) values(1,'bj');
insert into t5(id,name) values(2,'sh');
insert into t5(id,name) values(3,'bj');
insert into t5(id,name) values(4,'sh');
insert into t5(id,name) values(5,'tj');
a b c d
join
t
select t1.name ,t.x from t1
join t
select t2.name ,t.x from t2
join t
select t3.name ,t.x from t3
join t
使用场景:
如果你的业务中有些数据类似于数据字典,比如配置文件的配置,
常用业务的配置或者数据量不大很少变动的表,这些表往往不是特别大,
而且大部分的业务场景都会用到,那么这种表适合于Mycat全局表,无须对数据进行切分,
要在所有的分片上保存一份数据即可,Mycat 在Join操作中,业务表与全局表进行Join聚合会优先选择相同分片内的全局表join,
避免跨库Join,在进行数据插入操作时,mycat将把数据分发到全局表对应的所有分片执行,在进行数据读取时候将会随机获取一个节点读取数据。
vim schema.xml
table name="t_area" primaryKey="id" type="global" dataNode="sh1,sh2" /
后端数据准备
mysql -S /data/3307/mysql.sock
use taobao
create table t_area (id int not null primary key auto_increment,name varchar(20) not null);
mysql -S /data/3308/mysql.sock
use taobao
create table t_area (id int not null primary key auto_increment,name varchar(20) not null);
重启mycat
mycat restart
测试:
mysql -uroot -p123456 -h10.0.0.52 -P8066
use TESTDB
insert into t_area(id,name) values(1,'a');
insert into t_area(id,name) values(2,'b');
insert into t_area(id,name) values(3,'c');
insert into t_area(id,name) values(4,'d');
A
join
B
为了防止跨分片join,可以使用E-R模式
A join B
on a.xx=b.yy
join C
on A.id=C.id
table name="A" dataNode="sh1,sh2" rule="mod-long"
childTable name="B" joinKey="yy" parentKey="xx" /
/table
1. 概述
我们在考虑MySQL数据库的高可用的架构时,主要要考虑如下几方面:
关于对高可用的分级在这里我们不做详细的讨论,这里只讨论常用高可用方案的优缺点以及高可用方案的选型。
2. 高可用方案
2.1. 主从或主主半同步复制
使用双节点数据库,搭建单向或者双向的半同步复制。在5.7以后的版本中,由于lossless replication、logical多线程复制等一些列新特性的引入,使得MySQL原生半同步复制更加可靠。
常见架构如下:
通常会和proxy、keepalived等第三方软件同时使用,即可以用来监控数据库的 健康 ,又可以执行一系列管理命令。如果主库发生故障,切换到备库后仍然可以继续使用数据库。
优点:
缺点:
2.2. 半同步复制优化
半同步复制机制是可靠的。如果半同步复制一直是生效的,那么便可以认为数据是一致的。但是由于网络波动等一些客观原因,导致半同步复制发生超时而切换为异步复制,那么这时便不能保证数据的一致性。所以尽可能的保证半同步复制,便可提高数据的一致性。
该方案同样使用双节点架构,但是在原有半同复制的基础上做了功能上的优化,使半同步复制的机制变得更加可靠。
可参考的优化方案如下:
半同步复制由于发生超时后,复制断开,当再次建立起复制时,同时建立两条通道,其中一条半同步复制通道从当前位置开始复制,保证从机知道当前主机执行的进度。另外一条异步复制通道开始追补从机落后的数据。当异步复制通道追赶到半同步复制的起始位置时,恢复半同步复制。
搭建两条半同步复制通道,其中连接文件服务器的半同步通道正常情况下不启用,当主从的半同步复制发生网络问题退化后,启动与文件服务器的半同步复制通道。当主从半同步复制恢复后,关闭与文件服务器的半同步复制通道。
优点:
缺点:
2.3. 高可用架构优化
将双节点数据库扩展到多节点数据库,或者多节点数据库集群。可以根据自己的需要选择一主两从、一主多从或者多主多从的集群。
由于半同步复制,存在接收到一个从机的成功应答即认为半同步复制成功的特性,所以多从半同步复制的可靠性要优于单从半同步复制的可靠性。并且多节点同时宕机的几率也要小于单节点宕机的几率,所以多节点架构在一定程度上可以认为高可用性是好于双节点架构。
但是由于数据库数量较多,所以需要数据库管理软件来保证数据库的可维护性。可以选择MMM、MHA或者各个版本的proxy等等。常见方案如下:
MHA Manager会定时探测集群中的master节点,当master出现故障时,它可以自动将最新数据的slave提升为新的master,然后将所有其他的slave重新指向新的master,整个故障转移过程对应用程序完全透明。
MHA Node运行在每台MySQL服务器上,主要作用是切换时处理二进制日志,确保切换尽量少丢数据。
MHA也可以扩展到如下的多节点集群:
优点:
缺点:
Zookeeper使用分布式算法保证集群数据的一致性,使用zookeeper可以有效的保证proxy的高可用性,可以较好的避免网络分区现象的产生。
优点:
缺点:
2.4. 共享存储
共享存储实现了数据库服务器和存储设备的解耦,不同数据库之间的数据同步不再依赖于MySQL的原生复制功能,而是通过磁盘数据同步的手段,来保证数据的一致性。
SAN的概念是允许存储设备和处理器(服务器)之间建立直接的高速网络(与LAN相比)连接,通过这种连接实现数据的集中式存储。常用架构如下:
使用共享存储时,MySQL服务器能够正常挂载文件系统并操作,如果主库发生宕机,备库可以挂载相同的文件系统,保证主库和备库使用相同的数据。
优点:
缺点:
DRBD是一种基于软件、基于网络的块复制存储解决方案,主要用于对服务器之间的磁盘、分区、逻辑卷等进行数据镜像,当用户将数据写入本地磁盘时,还会将数据发送到网络中另一台主机的磁盘上,这样的本地主机(主节点)与远程主机(备节点)的数据就可以保证实时同步。常用架构如下:
当本地主机出现问题,远程主机上还保留着一份相同的数据,可以继续使用,保证了数据的安全。
DRBD是linux内核模块实现的快级别的同步复制技术,可以与SAN达到相同的共享存储效果。
优点:
缺点:
2.5. 分布式协议
分布式协议可以很好解决数据一致性问题。比较常见的方案如下:
MySQL cluster是官方集群的部署方案,通过使用NDB存储引擎实时备份冗余数据,实现数据库的高可用性和数据一致性。
优点:
缺点:
基于Galera的MySQL高可用集群, 是多主数据同步的MySQL集群解决方案,使用简单,没有单点故障,可用性高。常见架构如下:
优点:
缺点:
Paxos 算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。这个算法被认为是同类算法中最有效的。Paxos与MySQL相结合可以实现在分布式的MySQL数据的强一致性。常见架构如下:
优点:
缺点:
3. 总结
随着人们对数据一致性的要求不断的提高,越来越多的方法被尝试用来解决分布式数据一致性的问题,如MySQL自身的优化、MySQL集群架构的优化、Paxos、Raft、2PC算法的引入等等。
而使用分布式算法用来解决MySQL数据库数据一致性的问题的方法,也越来越被人们所接受,一系列成熟的产品如PhxSQL、MariaDB Galera Cluster、Percona XtraDB Cluster等越来越多的被大规模使用。
随着官方MySQL Group Replication的GA,使用分布式协议来解决数据一致性问题已经成为了主流的方向。期望越来越多优秀的解决方案被提出,MySQL高可用问题可以被更好的解决。
分布式解决方案 tidb
多主 多备 master lvs做vip 读写分离中间件
有两种方法,一种方法使用mysql的check table和repair table 的sql语句,另一种方法是使用MySQL提供的多个myisamchk, isamchk数据检测恢复工具。前者使用起来比较简便。推荐使用。
1. check table 和 repair table
登陆mysql 终端:
mysql -uxxxxx -p dbname
check table tabTest;
如果出现的结果说Status是OK,则不用修复,如果有Error,可以用:
repair table tabTest;
进行修复,修复之后可以在用check table命令来进行检查。在新版本的phpMyAdmin里面也可以使用check/repair的功能。
2. myisamchk, isamchk
其中myisamchk适用于MYISAM类型的数据表,而isamchk适用于ISAM类型的数据表。这两条命令的主要参数相同,一般新的系统都使用MYISAM作为缺省的数据表类型,这里以myisamchk为例子进行说明。当发现某个数据表出现问题时可以使用:
myisamchk tablename.MYI
进行检测,如果需要修复的话,可以使用:
myisamchk -of tablename.MYI
关于myisamchk的详细参数说明,可以参见它的使用帮助。需要注意的时在进行修改时必须确保MySQL服务器没有访问这个数据表,保险的情况下是最好在进行检测时把MySQL服务器Shutdown掉。
-----------------------------
另外可以把下面的命令放在你的rc.local里面启动MySQL服务器前:
[ -x /tmp/mysql.sock ] /pathtochk/myisamchk -of /DATA_DIR/*/*.MYI
其中的/tmp/mysql.sock是MySQL监听的Sock文件位置,对于使用RPM安装的用户应该是/var/lib/mysql/mysql.sock,对于使用源码安装则是/tmp/mysql.sock可以根据自己的实际情况进行变更,而pathtochk则是myisamchk所在的位置,DATA_DIR是你的MySQL数据库存放的位置。
需要注意的时,如果你打算把这条命令放在你的rc.local里面,必须确认在执行这条指令时MySQL服务器必须没有启动!检测修复所有数据库(表)