资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python聚合函数 python聚合函数有哪些

python分析奥巴马资金来源

奥巴马的竞选资金是一点点从选民那里募集来的。如获党内提名,可得政府拔款,但也没多少。美国大选不仅禁外国人捐款,而且禁止公司机构捐款,而只允许个人捐款。不仅如此,还为个人捐款限制了上限,防止富人捐过多的款而影响未来的公平执政。

成都创新互联公司是一家集网站建设,襄城企业网站建设,襄城品牌网站建设,网站定制,襄城网站建设报价,网络营销,网络优化,襄城网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

不仅富人自己不能多捐,如果某个老板呼吁自己的员工给某人捐钱或投票支持他,都是犯法的。因此,想要筹到几千万竞争资金,唯一的办法是争取更多选民支持,一点点募集。所以,中国、公司、大笔捐款,这三条都是犯法的。

我记得以前已经有华人闹过这种丑闻了。美国的选举法就是要严防少数人企图用几个臭钱影响美国的政治。所以我们作为外国人就更别去自讨没趣了。

导入包

In [1]:

import numpy as npimport pandas as pdfrom pandas import Series,DataFrame

方便大家操作,将月份和参选人以及所在政党进行定义

In [2]:

months = {'JAN' : 1, 'FEB' : 2, 'MAR' : 3, 'APR' : 4, 'MAY' : 5, 'JUN' : 6, 'JUL' : 7, 'AUG' : 8, 'SEP' : 9, 'OCT': 10, 'NOV': 11, 'DEC' : 12}of_interest = ['Obama, Barack', 'Romney, Mitt', 'Santorum, Rick', 'Paul, Ron', 'Gingrich, Newt']parties = { 'Bachmann, Michelle': 'Republican', 'Romney, Mitt': 'Republican', 'Obama, Barack': 'Democrat', "Roemer, Charles E. 'Buddy' III": 'Reform', 'Pawlenty, Timothy': 'Republican', 'Johnson, Gary Earl': 'Libertarian', 'Paul, Ron': 'Republican', 'Santorum, Rick': 'Republican', 'Cain, Herman': 'Republican', 'Gingrich, Newt': 'Republican', 'McCotter, Thaddeus G': 'Republican', 'Huntsman, Jon': 'Republican', 'Perry, Rick': 'Republican' }

读取文件

In [3]:

table = pd.read_csv('data/usa_election.txt')table.head()

C:\jupyter\lib\site-packages\IPython\core\interactiveshell.py:2785: DtypeWarning: Columns (6) have mixed types. Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result)

Out[3]:

cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num

0 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 250.0 20-JUN-11 NaN NaN NaN SA17A 736166

1 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 50.0 23-JUN-11 NaN NaN NaN SA17A 736166

2 C00410118 P20002978 Bachmann, Michelle SMITH, LANIER LANETT AL 3.68633e 08 INFORMATION REQUESTED INFORMATION REQUESTED 250.0 05-JUL-11 NaN NaN NaN SA17A 749073

3 C00410118 P20002978 Bachmann, Michelle BLEVINS, DARONDA PIGGOTT AR 7.24548e 08 NONE RETIRED 250.0 01-AUG-11 NaN NaN NaN SA17A 749073

4 C00410118 P20002978 Bachmann, Michelle WARDENBURG, HAROLD HOT SPRINGS NATION AR 7.19016e 08 NONE RETIRED 300.0 20-JUN-11 NaN NaN NaN SA17A 736166

In [8]:

#使用map函数 字典,新建一列各个候选人所在党派partytable['party'] = table['cand_nm'].map(parties)table.head()

Out[8]:

cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num party

0 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 250.0 20-JUN-11 NaN NaN NaN SA17A 736166 Republican

1 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 50.0 23-JUN-11 NaN NaN NaN SA17A 736166 Republican

2 C00410118 P20002978 Bachmann, Michelle SMITH, LANIER LANETT AL 3.68633e 08 INFORMATION REQUESTED INFORMATION REQUESTED 250.0 05-JUL-11 NaN NaN NaN SA17A 749073 Republican

3 C00410118 P20002978 Bachmann, Michelle BLEVINS, DARONDA PIGGOTT AR 7.24548e 08 NONE RETIRED 250.0 01-AUG-11 NaN NaN NaN SA17A 749073 Republican

4 C00410118 P20002978 Bachmann, Michelle WARDENBURG, HAROLD HOT SPRINGS NATION AR 7.19016e 08 NONE RETIRED 300.0 20-JUN-11 NaN NaN NaN SA17A 736166 Republican

In [10]:

#party这一列中有哪些元素table['party'].unique()

Out[10]:

array(['Republican', 'Democrat', 'Reform', 'Libertarian'], dtype=object)

In [ ]:

#使用value_counts()函数,统计party列中各个元素出现次数,value_counts()是Series中的,无参,返回一个带有每个元素出现次数的Series

In [11]:

table['party'].value_counts()

Out[11]:

Democrat 292400Republican 237575Reform 5364Libertarian 702Name: party, dtype: int64

In [12]:

#使用groupby()函数,查看各个党派收到的政治献金总数contb_receipt_amttable.groupby(by='party')['contb_receipt_amt'].sum()

Out[12]:

partyDemocrat 8.105758e 07Libertarian 4.132769e 05Reform 3.390338e 05Republican 1.192255e 08Name: contb_receipt_amt, dtype: float64

In [13]:

#查看具体每天各个党派收到的政治献金总数contb_receipt_amt 。使用groupby([多个分组参数])table.groupby(by=['party','contb_receipt_dt'])['contb_receipt_amt'].sum()

Out[13]:

party contb_receipt_dtDemocrat 01-AUG-11 175281.00 01-DEC-11 651532.82 01-JAN-12 58098.80 01-JUL-11 165961.00 01-JUN-11 145459.00 01-MAY-11 82644.00 01-NOV-11 122529.87 01-OCT-11 148977.00 01-SEP-11 403297.62 02-AUG-11 164510.11 02-DEC-11 216056.96 02-JAN-12 89743.60 02-JUL-11 17105.00 02-JUN-11 422453.00 02-MAY-11 396675.00 02-NOV-11 147183.81 02-OCT-11 62605.62 02-SEP-11 137948.41 03-AUG-11 147053.02 03-DEC-11 81304.02 03-JAN-12 87406.97 03-JUL-11 5982.00 03-JUN-11 320176.20 03-MAY-11 261819.11 03-NOV-11 119304.56 03-OCT-11 363061.02 03-SEP-11 45598.00 04-APR-11 640235.12 04-AUG-11 598784.23 04-DEC-11 72795.10 ... Republican 29-AUG-11 941769.23 29-DEC-11 428501.42 29-JAN-11 750.00 29-JAN-12 75220.02 29-JUL-11 233423.35 29-JUN-11 1340704.29 29-MAR-11 38875.00 29-MAY-11 8363.20 29-NOV-11 407322.64 29-OCT-11 81924.01 29-SEP-11 1612794.52 30-APR-11 43004.80 30-AUG-11 915548.58 30-DEC-11 492470.45 30-JAN-12 255204.80 30-JUL-11 12249.04 30-JUN-11 2744932.63 30-MAR-11 50240.00 30-MAY-11 17803.60 30-NOV-11 809014.83 30-OCT-11 43913.16 30-SEP-11 4886331.76 31-AUG-11 1017735.02 31-DEC-11 1094376.72 31-JAN-11 6000.00 31-JAN-12 869890.41 31-JUL-11 12781.02 31-MAR-11 62475.00 31-MAY-11 301339.80 31-OCT-11 734601.83Name: contb_receipt_amt, Length: 1183, dtype: float64

In [14]:

def trasform_date(d): day,month,year = d.split('-') month = months[month] return "20" year '-' str(month) '-' day

In [17]:

#将表中日期格式转换为'yyyy-mm-dd'。日期格式,通过函数加map方式进行转换table['contb_receipt_dt'] = table['contb_receipt_dt'].apply(trasform_date)

In [18]:

table.head()

Out[18]:

cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num party

0 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 250.0 2011-6-20 NaN NaN NaN SA17A 736166 Republican

1 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 50.0 2011-6-23 NaN NaN NaN SA17A 736166 Republican

2 C00410118 P20002978 Bachmann, Michelle SMITH, LANIER LANETT AL 3.68633e 08 INFORMATION REQUESTED INFORMATION REQUESTED 250.0 2011-7-05 NaN NaN NaN SA17A 749073 Republican

3 C00410118 P20002978 Bachmann, Michelle BLEVINS, DARONDA PIGGOTT AR 7.24548e 08 NONE RETIRED 250.0 2011-8-01 NaN NaN NaN SA17A 749073 Republican

4 C00410118 P20002978 Bachmann, Michelle WARDENBURG, HAROLD HOT SPRINGS NATION AR 7.19016e 08 NONE RETIRED 300.0 2011-6-20 NaN NaN NaN SA17A 736166 Republican

In [19]:

#查看老兵(捐献者职业)DISABLED VETERAN主要支持谁 :查看老兵们捐赠给谁的钱最多table['contbr_occupation'] == 'DISABLED VETERAN'

Out[19]:

0 False1 False2 False3 False4 False5 False6 False7 False8 False9 False10 False11 False12 False13 False14 False15 False16 False17 False18 False19 False20 False21 False22 False23 False24 False25 False26 False27 False28 False29 False ... 536011 False536012 False536013 False536014 False536015 False536016 False536017 False536018 False536019 False536020 False536021 False536022 False536023 False536024 False536025 False536026 False536027 False536028 False536029 False536030 False536031 False536032 False536033 False536034 False536035 False536036 False536037 False536038 False536039 False536040 FalseName: contbr_occupation, Length: 536041, dtype: bool

In [21]:

old_bing_df = table.loc[table['contbr_occupation'] == 'DISABLED VETERAN']

In [22]:

old_bing_df.groupby(by='cand_nm')['contb_receipt_amt'].sum()

Out[22]:

cand_nmCain, Herman 300.00Obama, Barack 4205.00Paul, Ron 2425.49Santorum, Rick 250.00Name: contb_receipt_amt, dtype: float64

In [23]:

table['contb_receipt_amt'].max()

Out[23]:

1944042.43

In [24]:

#找出候选人的捐赠者中,捐赠金额最大的人的职业以及捐献额 .通过query("查询条件来查找捐献人职业")table.query('contb_receipt_amt == 1944042.43')

Out[24]:

cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num party

176127 C00431445 P80003338 Obama, Barack OBAMA VICTORY FUND 2012 - UNITEMIZED CHICAGO IL 60680 NaN NaN 1944042.43 2011-12-31 NaN X * SA18 763233 Democrat

来源:

Python分组

前言分组原理

核心:

1.不论分组键是数组、列表、字典、Series、函数,只要其与待分组变量的轴长度一致都可以传入groupby进行分组。

2.默认axis=0按行分组,可指定axis=1对列分组。

对数据进行分组操作的过程可以概括为:split-apply-combine三步:

1.按照键值(key)或者分组变量将数据分组。

2.对于每组应用我们的函数,这一步非常灵活,可以是python自带函数,可以是我们自己编写的函数。

3.将函数计算后的结果聚合。

1 分组模式及其对象

1.1 分组的一般模式

三个要素:分组依据、数据来源、操作及其返回结果

df.groupby(分组依据)[数据来源].使用操作

1.2 分组依据的本质

1.3Groupby 对象

通过 ngroups 属性,可以访问分为了多少组:

通过 groups 属性,可以返回从 组名映射到 组索引列表的字典:

当 size 作为 DataFrame 的属性时,返回的是表长乘以表宽的大小,但在 groupby 对象上表示统计每个组的 元素个数:

通过 get_group 方法可以直接获取所在组对应的行,此时必须知道组的具体名字:

1.4 分组的三大操作

分组的三大操作:聚合、变换和过滤

2.聚合函数

2.1内置聚合函数

包括如下函数: max/min/mean/median/count/all/any/idxmax/idxmin/mad/nunique/skew/quantile/sum/std/var/sem/size/prod

2.2agg 方法

【a】使用多个函数

当使用多个聚合函数时,需要用列表的形式把内置聚合函数的对应的字符串传入,先前提到的所有字符串都是合法的。

【b】对特定的列使用特定的聚合函数

对于方法和列的特殊对应,可以通过构造字典传入 agg 中实现,其中字典以列名为键,以聚合字符串或字符串列表为值。

【c】使用自定义函数

在 agg 中可以使用具体的自定义函数,需要注意传入函数的参数是之前数据源中的列,逐列进行计算

【d】聚合结果重命名 如果想要对结果进行重命名,只需要将上述函数的位置改写成元组,元组的第一个元素为新的名字,第二个位置为原来的函数,包括聚合字符串和自定义函数

3 变换和过滤

3.1 变换函数与 transform 方法

变 换 函 数 的 返 回 值 为 同 长 度 的 序 列, 最 常 用 的 内 置 变 换 函 数 是 累 计 函 数:cum- count/cumsum/cumprod/cummax/cummin ,它们的使用方式和聚合函数类似,只不过完成的是组内 累计操作。

3.2 组索引与过滤

过滤在分组中是对于组的过滤,而索引是对于行的过滤

组过滤作为行过滤的推广,指的是如果对一个组的全体所在行进行统计的结果返回 True 则会被保留,False 则该组会被过滤,最后把所有未被过滤的组其对应的所在行拼接起来作为 DataFrame 返回。

在 groupby 对象中,定义了 filter 方法进行组的筛选,其中自定义函数的输入参数为数据源构成的 DataFrame 本身,在之前例子中定义的 groupby 对象中,传入的就是 df[['Height', 'Weight']] ,因此所有表方法和属性 都可以在自定义函数中相应地使用,同时只需保证自定义函数的返回为布尔值即可。

4 跨列分组

4.1 apply 的引入

4.2 apply 的使用

在设计上,apply 的自定义函数传入参数与 filter 完全一致,只不过后者只允许返回布尔值

【a】标量情况:结果得到的是 Series ,索引与 agg 的结果一致

【b】Series 情况:得到的是 DataFrame ,行索引与标量情况一致,列索引为 Series 的索引

【c】DataFrame 情况:得到的是 DataFrame ,行索引最内层在每个组原先 agg 的结果索引上,再加一层返 回的 DataFrame 行索引,同时分组结果 DataFrame 的列索引和返回的 DataFrame 列索引一致

数据蛙-Python进阶

这是漫长的一周,本周完成了Python的进阶模块,主要是pandas、numpy、matplotlib、seaborn、pyecharts这些模块的学习以及一个实际的案例:商品销售情况分析,之前一直觉得课程难度不够,但到这一周难度就大大提高了。尤其是案例练习中的RFM模型和用户生命周期建立,看懂不难但是自己写一直出错,在不断出错不断尝试中知识得到了积累,另外可视化部分没有什么练习题,希望后面可以加上一些这方面的练习,接下来分模块来总结一下学习的内容。

重新设置索引:df.set_index()

Series格式转换为DataFrame:df.to_frame()

文件读取:pd.read_csv(filepath, header = 0,skiprows=[1,2]) 

使用位置做索引:df.loc[0]        使用列表做索引:df.loc[[0,1,2]]

使用切片做索引:df.loc[0:4]        使用bool类型索引:df[df['年龄']30]

loc 是基于索引值的,切片是左闭右闭的

iloc 是基于位置的,切片是左闭右开的

修改列索引:df.rename(columns={'姓名':'name', '年龄':'age'},inplace=True)

替换一个值:df.replace({'name':{'小明':'xiaoming'}},inplace=True)

对数据进行排序:df.sort_values('age')

累加求和:df.cumsum(0)

删除列:del df['player']         删除行:df.drop(labels=0) labels 是行列的名字

数据拼接:pd.concat([left,right],axis=1)

# 指定列进行关联,默认是 inner join     result = pd.merge(left,right,on='key')

#多个关联条件:result = pd.merge(left, right, on=['key1', 'key2'])

#左连接:result = pd.merge(left, right, how='left', on=['key1', 'key2'])

# 列名不一样的关联:pd.merge(left,right,left_on = ['key1','key2'],right_on = ['key3','key4'])

#单个分组:groups = df.groupby('district')

# 作用多个聚合函数:groups.agg([np.mean,np.sum,np.std])

# 针对具体列聚合 groups.age.agg([np.mean,np.sum,np.std])

# 不同列不同聚合函数 groups.agg({"age":np.mean,"novip_buy_times":np.sum})

分组后该列值求和显示:groups['vip_buy_times'].transform('sum')

通常用于求占比:transform(lambda x: x /sum(x))

# 填充指定值:np.full([3,4],1)

# 起始为10,5为步长,30为结尾取不到:np.arange(10, 30, 5)

#随机矩阵:np.random.random((2,3))

# 平均划分:np.linspace( 0, 2*pi, 100 )

# 类型及转换:vector.astype('float')

# 多维变一维:matrix.ravel()

# 矩阵的扩展:a = np.arange(0, 40, 10)    b = np.tile(a, (3, 5))    # 行变成3倍,列变成5倍

# 水平拼接:np.hstack((a,b))  竖直拼接:np.vstack((a,b))

# 竖直分割:np.hsplit(a,3)    #水平分割:np.vsplit(a,3)

8. Select the data in rows [3, 4, 8] and in columns ['animal', 'age'].

A:df.loc[df.index[[3,4,8]],['animal','age']]

行采用位置,列采用普通索引,这里利用index函数将位置变化为具体的普通索引,再利用loc函数

19. The 'priority' column contains the values 'yes' and 'no'. Replace this column with a column of boolean values: 'yes' should be True and 'no' should be False

A1:df['priority'].replace(['yes','no'],[True,False],inplace=True) 用replace函数替换

A2:df['priority'] = df['priority'].map({'yes': True, 'no': False}) 用map函数替换

最大最小值的索引:df.idxmax、df.idxmin

找出最大最小的前N个数:nlargest()和nsmallest() 

将原表分组 并设置分段区间 pd.cut(df['A'], np.arange(0, 101, 10))

resample函数 日期重采样:s.resample('M').mean()

TimeGrouper 重组:s.groupby(pd.TimeGrouper('4M')).idxmax()

split 分割函数:temp = df['From_To'].str.split('_', expand=True) True为DataFrame

两个DataFrame拼接用join:df = df.join(temp)

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签

plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

%matplotlib inline 直接显示

折线图:plt.plot(x,y,color = 'r')

柱状图:plt.bar(x,y)  plt.barh(x,y) 多个bar x设置不同 堆积图 bottom设置不同

散点图:plt.scatter(x, y, c=colors, alpha=0.5, s = area)

直方图:plt.hist(a,bins= 20) bin代表分隔的最小单位

plt.legend() 显示图例

for a,b in zip(X+W[i],data[i]):

plt.text(a,b,"%.0f"% b,ha="center",va= "bottom") 添加数据标签

plt.annotate('注释文本',xy=(1, np.sin(1)),xytext=(2, 0.5), fontsize=16,arrowprops=dict(arrowstyle="-")) 添加注释文本

plt.xlabel("Group") x轴标题

plt.ylabel("Num") y轴标题

fig, axes = plt.subplots(nrows=2, ncols=2,facecolor='darkslategray')  绘制多个图形

axes[0,0] axes[0,1] axes[1,0] axes[1,1]

pylab.rcParams['figure.figsize'] = (10, 6) # 调整图片大小

动态展示图表

from pyecharts.charts import Bar

from pyecharts import options as opts

** pyecharts 绘图的五个步骤:**

创建图形对象:bar = Bar()

添加绘图数据:bar.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])

                     bar.add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])

                     bar.add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])

配置系列参数:对标签、线型等的一些设置

配置全局参数:bar.set_global_opts(title_opts=opts.TitleOpts(title="销售情况"))

渲染图片:生成本地 HTML 文件 bar.render("mycharts.html")  bar.render()

notebook 渲染:bar.render_notebook()

bar = (Bar()

.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])

.add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])

.add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])

.set_global_opts(title_opts=opts.TitleOpts(title="某商场销售情况"))

)

bar.render_notebook()

柱状图:Bar()

条形图:bar.reversal_axis() #翻转XY轴,将柱状图转换为条形图

折线图:from pyecharts.charts import Line  line=Line()

饼图:from pyecharts.charts import Page, Pie    Pie() 

转换日期类型:df['order_dt']=pd. to_datetime (df.order_dt,format="%Y%m%d")

将日期转换为月为单位:df['month']=df.order_dt.values. astype('datetime64[M]') 所有日期显示为当月第一天

去除日期单元值:order_diff/ np.timedelta64(1,'D')

过滤部分极值:grouped_user.sum() .query('order_products100') .order_amount

数据透视表:rfm=df.pivot_table( index ='user_id', values =['order_products','order_amount'], aggfunc ={'order_amount':'sum','order_products':'sum'})

map() 方法是pandas.series.map()方法, 对DF中的元素级别的操作, 可以对df的某列或某多列

applymap(func) 也是DF的属性, 对整个DF所有元素应用func操作

purchase_r=pivoted_counts.applymap(lambda x: 1 if x1 else np.NaN if x==0 else 0)

apply(func) 是DF的属性, 对DF中的行数据或列数据应用func操作,也可用于Series

apply(lambda x:x.cumsum()/x.sum())    累计占比

apply(lambda x:x/x.sum(),axis=0)     每一列中每行数据占比

下周开始进入数据分析思维的课程,很期待后面的课程以及项目,加油!

python--pandas分组聚合

groupby 方法是pandas中的分组方法,对数据框采用 groupby 方法后,返回的是 DataFrameGroupBy 对象,一般分组操作后会进行聚合操作。

对数据框按 A 列进行分组,产生分组数据框。分组数据框是可迭代对象,可以进行循环遍历,可以看出在循环中,每个元素的类型是元组,

元组的第一个元素是分组值,第二个元素是对应的分组数据框。

可以对分组后的数据框直接使用聚合方法 agg ,对分组数据框的每一列计算统计函数值。

可以根据数据框外的序列数据对数据框进行分组,需要注意 序列长度需要与数据框行数相同 。

可以根据数据框的多列对数据框进行分组。

根据 A , B 列进行分组,然后求和。

可以根据索引对数据框进行分组,需要设置 level 参数。

数据框只有一层索引,设置参数 level=0 。

当数据框索引有多层时,也可以根据需求设置 level 参数,完成分组聚合。

设置 level 参数,如需要根据第一层索引,即 id1 进行分组,可以设置 level=0 或 level='id1' 完成分组聚合。

分组后一般会进行聚合操作,用 agg 方法进行聚合。

对分组后数据框使用单个函数进行聚合,单个聚合函数会对每列进行计算,然后合并返回。聚合函数以字符串的形式传入。

可以对分组后的数据指定列进行分组聚合。需要注意 子列需要用[]包裹 。

聚合函数也可以传入自定义的匿名函数。

聚合函数可以是多个函数。聚合时,多个聚合函数会对每列进行计算,然后合并返回。聚合函数以列表的形式传入。

聚合返回后的数据列名有两层索引,第一层是聚合的列名,第二层是使用的聚合函数名。如果需要对返回的聚合函数名重命名,

需要在传参时,传入元组,第一个元素为聚合函数名,第二个元素为聚合函数。

同样,也可以传入匿名函数。

如果需要对不同的列进行不同的聚合计算,则需要传入字典的形式。

可以重命名聚合后的列名,注意 只能对一列传入一个聚合函数时有效 。


网页标题:python聚合函数 python聚合函数有哪些
本文URL:http://cdkjz.cn/article/doshihd.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220