资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

用python函数抽样 python系统抽样

Python常用函数三有哪些?这7个函数使用频率最高,总算搞明白了

1.1 例如:print(hex(2))案例

创新互联公司于2013年创立,是专业互联网技术服务公司,拥有项目成都做网站、网站设计、外贸营销网站建设网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元贵德做网站,已为上家服务,为贵德各地企业和个人服务,联系电话:18982081108

1.2 输出函数:print(hex(2))

1.3 输出结果:0x2

1.4 解析说明:返回16进制的数。

2.1 例如:print(chr(10))案例

2.2 输出函数:print(chr(10))

2.3 输出结果:0o12

2.4 解析说明:返回当前整数对应的ASCll码

3.1 例如:print(ord("b"))案例

3.2 输出函数:print(ord("b"))

3.3 输出结果:98

3.4 解析说明:返回当前ASCll码的10进制数

4.1 例如:print(chr(97))

4.2 输出函数:print(chr(97))

4.3 输出结果:b

4.4 解析说明:返回当前ASCll码的10进制数。

案例一:给你一个字符串,s = 'hello kitty'

1.1 输出函数:print(s.capitalize())

1.2 输出结果:0x2

1.3 解析说明:返回16进制的数。

2.1输出函数:print(s.replace('kitty','kuang'))

2.2 输出结果:hello kuang

2.3 解析说明:替换功能,将kitty换成kuang。

2.4 输出函数:print(s.replace('4','KK'))

2.5 输出结果:12KK12KK

2.6 解析说明:所有的4都替换成KK

2.7 输出函数:print(s.replace('4','KK'))

2.8 输出结果:12KK12KK124

2.9 解析说明:将前两个的4替换成go

案例一:给你一个字符串,ip = '192.168.1.1'

3.1 输出函数:print(ip.split(','))

3.2 输出结果:['192.168.1.1']

3.3 解析说明:将字符串分割成列表

案例一:给你一个字符串,ip = '192.168.1.1'

3.3 输出函数:print(ip.split(',',2))

3.4 输出结果:['192.168.1.1']

3.5 解析说明:从第二个开始分割成列表

使用Python构造经验累积分布函数(ECDF)

对于一个样本序列 ,经验累积分布函数 (Empirical Cumulative Distribution Function)可被定义为

其中 是一个指示函数,如果 ,指示函数取值为1,否则取值为0,因此 能反映在样本中小于 的元素数量占比。

根据格利文科定理(Glivenko–Cantelli Theorem),如果一个样本满足独立同分布(IID),那么其经验累积分布函数 会趋近于真实的累积分布函数 。

首先定义一个类,命名为ECDF:

我们采用均匀分布(Uniform)进行验证,导入 uniform 包,然后进行两轮抽样,第一轮抽取10次,第二轮抽取1000次,比较输出的结果。

输出结果为:

而我们知道,在真实的0到1均匀分布中, 时, ,从模拟结果可以看出,样本量越大,最终的经验累积分布函数值也越接近于真实的累积分布函数值,因此格利文科定理得以证明。

python 8个常用内置函数解说

8个超好用内置函数set(),eval(),sorted(),reversed(),map(),reduce(),filter(),enumerate()

python中有许多内置函数,不像print那么广为人知,但它们却异常的强大,用好了可以大大提高代码效率。

这次来梳理下8个好用的python内置函数

1、set()

当需要对一个列表进行去重操作的时候,set()函数就派上用场了。

用于创建一个集合,集合里的元素是无序且不重复的。集合对象创建后,还能使用并集、交集、差集功能。

2、eval()之前有人问如何用python写一个四则运算器,输入字符串公式,直接产生结果。用eval()来做就很简单:eval(str_expression)作用是将字符串转换成表达式,并且执行。

3、sorted()在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted() ,它可以对任何可迭代对象进行排序,并返回列表。对列表升序操作:

对元组倒序操作:

使用参数:key,根据自定义规则,按字符串长度来排序:

根据自定义规则,对元组构成的列表进行排序:

4、reversed()如果需要对序列的元素进行反转操作,reversed()函数能帮到你。reversed()接受一个序列,将序列里的元素反转,并最终返回迭代器。

5、map()做文本处理的时候,假如要对序列里的每个单词进行大写转化操作。这个时候就可以使用map()函数。

map()会根据提供的函数,对指定的序列做映射,最终返回迭代器。也就是说map()函数会把序列里的每一个元素用指定的方法加工一遍,最终返回给你加工好的序列。举个例子,对列表里的每个数字作平方处理:

6、reduce()前面说到对列表里的每个数字作平方处理,用map()函数。那我想将列表里的每个元素相乘,该怎么做呢?这时候用到reduce()函数。

reduce()会对参数序列中元素进行累积。第一、第二个元素先进行函数操作,生成的结果再和第三个元素进行函数操作,以此类推,最终生成所有元素累积运算的结果。再举个例子,将字母连接成字符串。

你可能已经注意到,reduce()函数在python3里已经不再是内置函数,而是迁移到了functools模块中。这里把reduce()函数拎出来讲,是因为它太重要了。

7、filter()一些数字组成的列表,要把其中偶数去掉,该怎么做呢?

filter()函数轻松完成了任务,它用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象。filter()函数和map()、reduce()函数类似,都是将序列里的每个元素映射到函数,最终返回结果。我们再试试,如何从许多单词里挑出包含字母w的单词。

8、enumerate()这样一个场景,同时打印出序列里每一个元素和它对应的顺序号,我们用enumerate()函数做做看。

enumerate翻译过来是枚举、列举的意思,所以说enumerate()函数用于对序列里的元素进行顺序标注,返回(元素、索引)组成的迭代器。再举个例子说明,对字符串进行标注,返回每个字母和其索引。

Python 数据处理(二十四)—— 索引和选择

如果你想获取 'A' 列的第 0 和第 2 个元素,你可以这样做:

这也可以用 .iloc 获取,通过使用位置索引来选择内容

可以使用 .get_indexer 获取多个索引:

警告 :

对于包含一个或多个缺失标签的列表,使用 .loc 或 [] 将不再重新索引,而是使用 .reindex

在以前的版本中,只要索引列表中存在至少一个有效标签,就可以使用 .loc[list-of-labels]

但是现在,只要索引列表中存在缺失的标签将引发 KeyError 。推荐的替代方法是使用 .reindex() 。

例如

索引列表的标签都存在

先前的版本

但是,现在

索引标签列表中包含不存在的标签,使用 reindex

另外,如果你只想选择有效的键,可以使用下面的方法,同时保留了数据的 dtype

对于 .reindex() ,如果有重复的索引将会引发异常

通常,您可以将所需的标签与当前轴做交集,然后重新索引

但是,如果你的索引结果包含重复标签,还是会引发异常

使用 sample() 方法可以从 Series 或 DataFrame 中随机选择行或列。

该方法默认会对行进行采样,并接受一个特定的行数、列数,或数据子集。

默认情况下, sample 每行最多返回一次,但也可以使用 replace 参数进行替换采样

默认情况下,每一行被选中的概率相等,但是如果你想让每一行有不同的概率,你可以为 sample 函数的 weights 参数设置抽样权值

这些权重可以是一个列表、一个 NumPy 数组或一个 Series ,但它们的长度必须与你要抽样的对象相同。

缺失的值将被视为权重为零,并且不允许使用 inf 值。如果权重之和不等于 1 ,则将所有权重除以权重之和,将其重新归一化。例如

当应用于 DataFrame 时,您可以通过简单地将列名作为字符串传递给 weights 作为采样权重(前提是您要采样的是行而不是列)。

sample 还允许用户使用 axis 参数对列进行抽样。

最后,我们还可以使用 random_state 参数为 sample 的随机数生成器设置一个种子,它将接受一个整数(作为种子)或一个 NumPy RandomState 对象

当为该轴设置一个不存在的键时, .loc/[] 操作可以执行放大

在 Series 的情况下,这实际上是一个追加操作

可以通过 .loc 在任一轴上放大 DataFrame

这就像 DataFrame 的 append 操作

由于用 [] 做索引必须处理很多情况(单标签访问、分片、布尔索引等),所以需要一些开销来搞清楚你的意图

如果你只想访问一个标量值,最快的方法是使用 at 和 iat 方法,这两个方法在所有的数据结构上都实现了

与 loc 类似, at 提供了基于标签的标量查找,而 iat 提供了基于整数的查找,与 iloc 类似

同时,你也可以根据这些索引进行设置值

如果索引标签不存在,会放大数据

另一种常见的操作是使用布尔向量来过滤数据。运算符包括:

|(or) 、 (and) 、 ~ (not)

这些必须用括号来分组,因为默认情况下, Python 会将 df['A'] 2 df['B'] 3 这样的表达式评估为 df['A'] (2 df['B']) 3 ,而理想的执行顺序是 (df['A'] 2) (df['B'] 3)

使用一个布尔向量来索引一个 Series ,其工作原理和 NumPy ndarray 一样。

您可以使用一个与 DataFrame 的索引长度相同的布尔向量从 DataFrame 中选择行

列表推导式和 Series 的 map 函数可用于产生更复杂的标准

我们可以使用布尔向量结合其他索引表达式,在多个轴上索引

iloc 支持两种布尔索引。如果索引器是一个布尔值 Series ,就会引发异常。

例如,在下面的例子中, df.iloc[s.values, 1] 是正确的。但是 df.iloc[s,1] 会引发 ValueError 。


网页标题:用python函数抽样 python系统抽样
路径分享:http://cdkjz.cn/article/dosgops.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220