看了你说递归的效率低。那么你可以不用的。
公司主营业务:网站设计制作、网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联推出怀远免费做网站回馈大家。
给出的方法就是先生成第一个排列,然后每次调用下面的函数给出下一个排列,这样生成的效率很高,这个函数可以内联。
这个是很经典的排列组合算法啊?在网上能搜到一大堆。
大概是那种带指向的移动的算法。我给你搜一个吧。
我找了几个,这个是我觉得说的比较清楚的,你可以仔细参考一下,看不懂的话再搜点别的好了。。
全排列的算法跟这个不太一样的。需要有点改动的。
至于语言的话,应该不会有太大问题吧。。basic版的确实比较少,现在我也比较懒不想动手写。。还是要靠你自己啦。
★生成排列的算法:
比如要生成5,4,3,2,1的全排列,首先找出一个最小的排列12345, 然后依次调用n!次STL算法中的next_permutation()即可输出所有的全排列情况。所以这种算法的细节就是STL algorithm中next_permutation()的实现机制。详细的实现代码,大伙可以参考侯捷的《STL源代码剖析》,在这里我只说一下我的理解:
1 首先从最尾端开始往前寻找两个相邻元素,令第一个元素为*i,第二个元素为*ii,且满足*i*ii,找到这样一组相邻的元素后。
2 再从最尾端开始往前检验,找出第一个大于*i的元素,令为*k,将i,k元素对调。
3 再将ii及ii之后的所有元素颠倒排列,此即所求之"下一个"排列。
prev_permutation()算法的思路也基本相同,只不过它们寻找的"拐点"不同,在next_permutation()算法中寻找的是峰值拐点,而在prev_permutation()算法中寻找的是谷值拐点。另外,在第二步中,prev_permutation()要找的是第一个小于*i的元素而不是第一个大于*i的元素。
具体例子,有空再举,现在时间太晚了:)
★生成组合的算法:
如下面截图所示,分全组合和r-组合两种情况。
这里有一段核心代码:
//--------------------------------------------------------
// Generate next combination (algorithm from Rosen p. 286)
//--------------------------------------------------------
public int[] getNext () {
if (numLeft.equals (total)) {
numLeft = numLeft.subtract (BigInteger.ONE);
return a;
}
int i = r - 1;
while (a[i] == n - r + i) {
i--;
}
a[i] = a[i] + 1;
for (int j = i + 1; j r; j++) {
a[j] = a[i] + j - i;
}
numLeft = numLeft.subtract (BigInteger.ONE);
return a; //这里返回的a数组,存储的就是下标的排列组合。
}
到这里,也许大伙会有一个疑问,假如要求的不是数字的排列组合,而是字符或字符串的排列组合呢?怎么办?其实很简单,你只要拿数组的下标来做排列组合,返回他们下标的排列组合,然后再到原数组中读取字符串值,就可以输出全部的排列组合结果。
图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。这个看似简单的问题,在过去的四十年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果。
本文针对几种经典而常用的二值发放进行了简单的讨论并给出了其vb.net 实现。
1、P-Tile法
Doyle于1962年提出的P-Tile (即P分位数法)可以说是最古老的一种阈值选取方法。该方法根据先验概率来设定阈值,使得二值化后的目标或背景像素比例等于先验概率,该方法简单高效,但是对于先验概率难于估计的图像却无能为力。
2、OTSU 算法(大津法)
OSTU算法可以说是自适应计算单阈值(用来转换灰度图像为二值图像)的简单高效方法。1978 OTSU年提出的最大类间方差法以其计算简单、稳定有效,一直广为使用。
3、迭代法(最佳阀值法)
(1). 求出图象的最大灰度值和最小灰度值,分别记为Zl和Zk,令初始阈值为:
(2). 根据阈值TK将图象分割为前景和背景,分别求出两者的平均灰度值Z0和ZB:
式中,Z(i,j)是图像上(i,j)点的象素值,N(i,j)是(i,j)点的权值,一般取1。
(3). 若TK=TK+1,则所得即为阈值,否则转2,迭代计算。
4、一维最大熵阈值法
它的思想是统计图像中每一个灰度级出现的概率 ,计算该灰度级的熵 ,假设以灰度级T分割图像,图像中低于T灰度级的像素点构成目标物体(O),高于灰度级T的像素点构成背景(B),那么各个灰度级在本区的分布概率为:
O区: i=1,2……,t
B区: i=t+1,t+2……L-1
上式中的 ,这样对于数字图像中的目标和背景区域的熵分别为:
对图像中的每一个灰度级分别求取W=H0 +HB,选取使W最大的灰度级作为分割图像的阈值,这就是一维最大熵阈值图像分割法。
Function Min(x() as integer,y() as integer) as double
dim i,j,k,a
dim m() as double
dim s() as string
dim mins as string
redim m(ubound(x),ubound(x))
redim s(ubound(x),ubound(x))
for i=1 to ubound(x)-1 '从起始点0点到i点的距离
m(i,0)=((x(i)-x(0))^2+(y(i)-y(0))^2)^0.5
s(i,0)="0-" cstr(i)
next
'从起始点开始经过K个点后到达i点的最短距离m(i,k),s为各点的连线如"0-3-2-1-4"
for k=1 to ubound(x)-2
for i=1 to ubound(x)-1
m(i,k)=10^307
for j=1 to ubound(x)-1
if instr(s(j,k-1),cstr(i))=0 then'避免重复走一点
a=((x(i)-x(j))^2+(y(i)-y(j))^2)^0.5
if a+m(j,k-1)m(i,k) then
m(i,k)=a+m(j,k-1)
s(i,k)=s(j,k-1) "-" cstr(i)
endif
end if
next
next
next
'计算经过各点后到达最后一个点的最短距离
min=10^307
for j=1 to ubound(x)-1
a=((x(ubound(x))-x(j))^2+(y(ubound(x))-y(j))^2)^0.5
if a+m(j,ubound(x)-2)min then
min=a+m(j,ubound(x)-2)
mins=s(j,ubound(x)-2) "-" cstr(ubound(x))
end if
next
msgbox "最短距离:" min vbcrlf "最短路径:" mins
End function
private sub Command1_Click
dim x(5) as integer
dim y(5) as integer
dim m as double
x(0)=0
y(0)=0
x(1)=40
y(1)=600
......
x(5)=1000
y(5)=1000
m=min(x,y)
End sub
下面是完整的类,可以设置任意密码
'DES及md5加密解密----添加引用中添加对system.web的引用。
Imports System.Security.Cryptography
Imports System
Imports System.Text
Imports System.Web
''' summary
''' DES加密类
''' /summary
''' remarks/remarks
Public Class DESEncrypt
Public Sub DESEncrypt()
End Sub
Public Shared Function Encrypt(ByVal Text As String) As String
Return Encrypt(Text, "12345678")
End Function
Public Shared Function Encrypt(ByVal Text As String, ByVal sKey As String) As String
Dim des As New DESCryptoServiceProvider()
Dim inputByteArray As Byte()
inputByteArray = Encoding.Default.GetBytes(Text)
des.Key = ASCIIEncoding.ASCII.GetBytes(System.Web.Security.FormsAuthentication.HashPasswordForStoringInConfigFile(sKey, "md5").Substring(0, 8))
des.IV = ASCIIEncoding.ASCII.GetBytes(System.Web.Security.FormsAuthentication.HashPasswordForStoringInConfigFile(sKey, "md5").Substring(0, 8))
Dim ms As New System.IO.MemoryStream()
Dim cs As New CryptoStream(ms, des.CreateEncryptor(), CryptoStreamMode.Write)
cs.Write(inputByteArray, 0, inputByteArray.Length)
cs.FlushFinalBlock()
Dim ret As New StringBuilder()
Dim b As Byte
For Each b In ms.ToArray()
ret.AppendFormat("{0:X2}", b)
Next
Return ret.ToString()
End Function
Public Shared Function Decrypt(ByVal Text As String) As String
Return Decrypt(Text, "12345678")
End Function
Public Shared Function Decrypt(ByVal Text As String, ByVal sKey As String) As String
Dim des As New DESCryptoServiceProvider()
Dim len As Integer
len = Text.Length / 2
Dim inputByteArray(len - 1) As Byte
Dim x, i As Integer
For x = 0 To len - 1
i = Convert.ToInt32(Text.Substring(x * 2, 2), 16)
inputByteArray(x) = CType(i, Byte)
Next
des.Key = ASCIIEncoding.ASCII.GetBytes(System.Web.Security.FormsAuthentication.HashPasswordForStoringInConfigFile(sKey, "md5").Substring(0, 8))
des.IV = ASCIIEncoding.ASCII.GetBytes(System.Web.Security.FormsAuthentication.HashPasswordForStoringInConfigFile(sKey, "md5").Substring(0, 8))
Dim ms As New System.IO.MemoryStream()
Dim cs As New CryptoStream(ms, des.CreateDecryptor(), CryptoStreamMode.Write)
cs.Write(inputByteArray, 0, inputByteArray.Length)
cs.FlushFinalBlock()
Return Encoding.Default.GetString(ms.ToArray())
End Function
End Class
'以下是调用方法
Public Class Form1
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click '加密
Dim str_Encrypt As String = DESEncrypt.Encrypt("你要加密的文本,可以是任意长度", "密码,可以很长,如果省略这个参数就是默认的12345678")
End Sub
Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click '解密
Dim str_Decrypt As String = DESEncrypt.Decrypt("你要解密的文本, 可以是任意长度", "加密时用到的密码,如果省略这个参数就是默认的12345678")
End Sub