资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python中pca函数 python PCA

python pca怎么得到主成份

一般步骤来实现PCA算法

成都创新互联公司专注于企业网络营销推广、网站重做改版、贵南网站定制设计、自适应品牌网站建设、H5场景定制商城网站建设、集团公司官网建设、外贸营销网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为贵南等各大城市提供网站开发制作服务。

(1)零均值化

假如原始数据集为矩阵dataMat,dataMat中每一行代表一个样本,每一列代表同一个特征。零均值化就是求每一列的平均值,然后该列上的所有数都减去这个均值。也就是说,这里零均值化是对每一个特征而言的,零均值化都,每个特征的均值变成0。实现代码如下:

[python] view plain copy

def zeroMean(dataMat):

meanVal=np.mean(dataMat,axis=0)     #按列求均值,即求各个特征的均值

newData=dataMat-meanVal

return newData,meanVal

函数中用numpy中的mean方法来求均值,axis=0表示按列求均值。

该函数返回两个变量,newData是零均值化后的数据,meanVal是每个特征的均值,是给后面重构数据用的。

(2)求协方差矩阵

[python] view plain copy

newData,meanVal=zeroMean(dataMat)

covMat=np.cov(newData,rowvar=0)

numpy中的cov函数用于求协方差矩阵,参数rowvar很重要!若rowvar=0,说明传入的数据一行代表一个样本,若非0,说明传入的数据一列代表一个样本。因为newData每一行代表一个样本,所以将rowvar设置为0。

covMat即所求的协方差矩阵。

(3)求特征值、特征矩阵

调用numpy中的线性代数模块linalg中的eig函数,可以直接由covMat求得特征值和特征向量:

[python] view plain copy

eigVals,eigVects=np.linalg.eig(np.mat(covMat))

eigVals存放特征值,行向量。

eigVects存放特征向量,每一列带别一个特征向量。

特征值和特征向量是一一对应的

(4)保留主要的成分[即保留值比较大的前n个特征]

第三步得到了特征值向量eigVals,假设里面有m个特征值,我们可以对其排序,排在前面的n个特征值所对应的特征向量就是我们要保留的,它们组成了新的特征空间的一组基n_eigVect。将零均值化后的数据乘以n_eigVect就可以得到降维后的数据。代码如下:

[python] view plain copy

eigValIndice=np.argsort(eigVals)            #对特征值从小到大排序

n_eigValIndice=eigValIndice[-1:-(n+1):-1]   #最大的n个特征值的下标

n_eigVect=eigVects[:,n_eigValIndice]        #最大的n个特征值对应的特征向量

lowDDataMat=newData*n_eigVect               #低维特征空间的数据

reconMat=(lowDDataMat*n_eigVect.T)+meanVal  #重构数据

return lowDDataMat,reconMat

代码中有几点要说明一下,首先argsort对特征值是从小到大排序的,那么最大的n个特征值就排在后面,所以eigValIndice[-1:-(n+1):-1]就取出这个n个特征值对应的下标。【python里面,list[a:b:c]代表从下标a开始到b,步长为c。】

python 有直接求pca的函数么

[coef,SCORE,latent] = princomp(A); latentsum = sum(latent); for i = 1:col%A的总列数 if sum(latent(1:i))/latentsum threshold%阈值 eg:0.95 tranM = coef(:,1:i); break; end end B = A* tranM;

python怎么数据进行pca

基本步骤:

对数据进行归一化处理(代码中并非这么做的,而是直接减去均值)

计算归一化后的数据集的协方差矩阵

计算协方差矩阵的特征值和特征向量

保留最重要的k个特征(通常k要小于n),也可以自己制定,也可以选择一个阈值,然后通过前k个特征值之和减去后面n-k个特征值之和大于这个阈值,则选择这个k

找出k个特征值对应的特征向量

将m * n的数据集乘以k个n维的特征向量的特征向量(n * k),得到最后降维的数据。

其实PCA的本质就是对角化协方差矩阵。有必要解释下为什么将特征值按从大到小排序后再选。首先,要明白特征值表示的是什么?在线性代数里面我们求过无数次了,那么它具体有什么意义呢?对一个n*n的对称矩阵进行分解,我们可以求出它的特征值和特征向量,就会产生n个n维的正交基,每个正交基会对应一个特征值。然后把矩阵投影到这N个基上,此时特征值的模就表示矩阵在该基的投影长度。

特征值越大,说明矩阵在对应的特征向量上的方差越大,样本点越离散,越容易区分,信息量也就越多。因此,特征值最大的对应的特征向量方向上所包含的信息量就越多,如果某几个特征值很小,那么就说明在该方向的信息量非常少,我们就可以删除小特征值对应方向的数据,只保留大特征值方向对应的数据,这样做以后数据量减小,但有用的信息量都保留下来了。PCA就是这个原理。

PCA(主成分分析)python实现

回顾了下PCA的步骤,并用python实现。深刻的发现当年学的特征值、特征向量好强大。

PCA是一种无监督的学习方式,是一种很常用的降维方法。在数据信息损失最小的情况下,将数据的特征数量由n,通过映射到另一个空间的方式,变为k(kn)。

这里用一个2维的数据来说明PCA,选择2维的数据是因为2维的比较容易画图。

这是数据:

画个图看看分布情况:

协方差的定义为:

假设n为数据的特征数,那么协方差矩阵M, 为一个n n的矩阵,其中Mij为第i和第j个特征的协方差,对角线是各个特征的方差。

在我们的数据中,n=2,所以协方差矩阵是2 2的,

通过numpy我们可以很方便的得到:

得到cov的结果为:

array([[ 0.61655556, 0.61544444],

[ 0.61544444, 0.71655556]])

由于我们之前已经做过normalization,因此对于我们来说,

这个矩阵就是 data*data的转置矩阵。

得到结果:

matrix([[ 5.549, 5.539],

[ 5.539, 6.449]])

我们发现,其实协方差矩阵和散度矩阵关系密切,散度矩阵 就是协方差矩阵乘以(总数据量-1)。因此他们的 特征根 和 特征向量 是一样的。这里值得注意的一点就是,散度矩阵是 SVD奇异值分解 的一步,因此PCA和SVD是有很大联系的,他们的关系这里就不详细谈了,以后有机会再写下。

用numpy计算特征根和特征向量很简单,

但是他们代表的意义非常有意思,让我们将特征向量加到我们原来的图里:

其中红线就是特征向量。有几点值得注意:

蓝色的三角形就是经过坐标变换后得到的新点,其实他就是红色原点投影到红线、蓝线形成的。

得到特征值和特征向量之后,我们可以根据 特征值 的大小,从大到小的选择K个特征值对应的特征向量。

这个用python的实现也很简单:

从eig_pairs选取前k个特征向量就行。这里,我们只有两个特征向量,选一个最大的。

主要将原来的数据乘以经过筛选的特征向量组成的特征矩阵之后,就可以得到新的数据了。

output:

数据果然变成了一维的数据。

最后我们通过画图来理解下数据经过PCA到底发生了什么。

绿色的五角星是PCA处理过后得到的一维数据,为了能跟以前的图对比,将他们的高度定位1.2,其实就是红色圆点投影到蓝色线之后形成的点。这就是PCA,通过选择特征根向量,形成新的坐标系,然后数据投影到这个新的坐标系,在尽可能少的丢失信息的基础上实现降维。

通过上述几步的处理,我们简单的实现了PCA第一个2维数据的处理,但是原理就是这样,我们可以很轻易的就依此实现多维的。

用sklearn的PCA与我们的pca做个比较:

得到结果:

用我们的pca试试

得到结果:

完全一致,完美~

值得一提的是,sklearn中PCA的实现,用了部分SVD的结果,果然他们因缘匪浅。


分享文章:python中pca函数 python PCA
链接URL:http://cdkjz.cn/article/dooohep.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220