提到最大公约数,那么就不得不说什么是公约数,它是一个能被若干个整数同时均整除的整数。如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;公约数中最大的称为最大公约数。对任意的若干个正整数,1总是它们的公因数。
定制网站可以根据自己的需求进行定制,成都网站建设、网站设计构思过程中功能建设理应排到主要部位公司成都网站建设、网站设计的运用实际效果公司网站制作网站建立与制做的实际意义
举个例子:30和40的公约数有:1,2,5,10,那么10是这几个里面最大的,就是30和40的最大公约数。
python求最大公约数
1.python求最大公约数设计思路
给定两个数,从1开始尝试,步长为1逐渐递增,为了优化算法,只需要循环到两个数中最小的那个数就可以。所以,第一步就是计算出两个数中最小的数,然后利用for循环从1到最小的那个数进行枚举,如果该数能够同时被两个数整除,则记录下来,直到循环结束,最后,最大的这个就是最大公约数。
特别注意:这里会用到range函数,range(0,5)的结果为0,1,2,3,4注意是没有5的,因此在本例中循环时应该是从1到最小的那个数+1才对。
2.最大公约数的python实现
打开百度APP,查看更多高清图片
说明:在上面的代码中,我们会用到自定义函数的定义方法:def ,两个数的最小数的判断方法,for循环和枚举取值,整除取余,输入输出等内置函数。
提到最大公约数,那么就不得不说什么是公约数,它是一个能被若干个整数同时均整除的整数。如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;公约数中最大的称为最大公约数。对任意的若干个正整数,1总是它们的公因数。
举个例子:30和40的公约数有:1,2,5,10,那么10是这几个里面最大的,就是30和40的最大公约数。
python求最大公约数
1.python求最大公约数设计思路
给定两个数,从1开始尝试,步长为1逐渐递增,为了优化算法,只需要循环到两个数中最小的那个数就可以。所以,第一步就是计算出两个数中最小的数,然后利用for循环从1到最小的那个数进行枚举,如果该数能够同时被两个数整除,则记录下来,直到循环结束,最后,最大的这个就是最大公约数。
特别注意:这里会用到range函数,range(0,5)的结果为0,1,2,3,4注意是没有5的,因此在本例中循环时应该是从1到最小的那个数+1才对。
2.最大公约数的python实现
打开百度APP,查看更多高清图片
说明:在上面的代码中,我们会用到自定义函数的定义方法:def ,两个数的最小数的判断方法,for循环和枚举取值,整除取余,输入输出等内置函数。
# 定义一个函数
def gcd(x, y):
"""该函数返回两个数的最大公约数"""
# 获取最小值
if x y:
smaller = y
else:
smaller = x
for i in range(1,smaller + 1):
if((x % i == 0) and (y % i == 0)):
hcf = i
return gcd
# 用户输入两个数字
num1 = int(input("输入第一个数字: "))
num2 = int(input("输入第二个数字: "))
print( num1,"和", num2,"的最大公约数为", gcd(num1, num2))
函数定义:
Common_multiple(number1, number2): # 求两个数的最小公倍数
Maximum_common_divisor(*number): # 求任意多个数的最小公倍数
Minimum_common_multiple(*number): # 求任意多个数的最大公因数
程序缩进如下:
程序缩进
运行结果展示:
运行结果
函数具体代码:缩进版本点击自取
def Common_multiple(number1, number2): # 求两个数的最小公倍数
while number1 % number2 != 0:
number1, number2 = number2, (number1 % number2)
return number2
def Maximum_common_divisor(*number): # 求任意多个数的最小公倍数
while len(number) 1:
number = [Common_multiple(number[i], number[i+1]) for i in range(0, len(number)-1)]
return number[0]
def Minimum_common_multiple(*number): # 求任意多个数的最大公因数
while len(number) 1:
number = [number[i]*number[i+1]/Common_multiple(number[i], number[i+1]) for i in range(0, len(number)-1)]
return number[0]